Ten Compatible Poisson Brackets on $\mathbb P^5$
Symmetry, integrability and geometry: methods and applications, Tome 19 (2023) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We give explicit formulas for ten compatible Poisson brackets on $\mathbb P^5$ found in arXiv:2007.12351.
Keywords: Massey products.
Mots-clés : compatible Poisson brackets, homological perturbation
@article{SIGMA_2023_19_a58,
     author = {Viille Nordstrom and Alexander Polishchuk},
     title = {Ten {Compatible} {Poisson} {Brackets} on $\mathbb P^5$},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2023},
     volume = {19},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a58/}
}
TY  - JOUR
AU  - Viille Nordstrom
AU  - Alexander Polishchuk
TI  - Ten Compatible Poisson Brackets on $\mathbb P^5$
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2023
VL  - 19
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a58/
LA  - en
ID  - SIGMA_2023_19_a58
ER  - 
%0 Journal Article
%A Viille Nordstrom
%A Alexander Polishchuk
%T Ten Compatible Poisson Brackets on $\mathbb P^5$
%J Symmetry, integrability and geometry: methods and applications
%D 2023
%V 19
%U http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a58/
%G en
%F SIGMA_2023_19_a58
Viille Nordstrom; Alexander Polishchuk. Ten Compatible Poisson Brackets on $\mathbb P^5$. Symmetry, integrability and geometry: methods and applications, Tome 19 (2023). http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a58/

[1] Bondal A., Non-commutative deformations and Poisson brackets on projective spaces, Preprint MPI 93–67, Max Planck Institute for Mathematics, 1993 | MR

[2] Feigin B.L., Odesskii A.V., “Vector bundles on an elliptic curve and Sklyanin algebras”, Topics in Quantum Groups and Finite-Type Invariants, Amer. Math. Soc. Transl. Ser. 2, 185, American Mathematical Society, Providence, RI, 1998, 65–84, arXiv: q-alg/9509021 | DOI | MR | Zbl

[3] Hua Z., Polishchuk A., Elliptic bihamiltonian structures from relative shifted Poisson structures, arXiv: 2007.12351

[4] Keller B., “Introduction to $A$-infinity algebras and modules”, Homology Homotopy Appl., 3 (2001), 1–35, arXiv: math.RA/9910179 | DOI | MR | Zbl

[5] Kontsevich M., Soibelman Y., “Homological mirror symmetry and torus fibrations”, Symplectic Geometry and Mirror Symmetry (Seoul, 2000), World Scientific, River Edge, NJ, 2001, 203–263, arXiv: math.SG/0011041 | DOI | MR | Zbl

[6] Odesskii A., Wolf T., “Compatible quadratic Poisson brackets related to a family of elliptic curves”, J. Geom. Phys., 63 (2013), 107–117, arXiv: 1204.1299 | DOI | MR | Zbl

[7] Polishchuk A., “Algebraic geometry of Poisson brackets”, J. Math. Sci. (N.Y.), 84 (1997), 1413–1444 | DOI | MR | Zbl

[8] Polishchuk A., “Poisson structures and birational morphisms associated with bundles on elliptic curves”, Int. Math. Res. Not., 1998 (1998), 683–703, arXiv: alg-geom/9712022 | DOI | MR