Mots-clés : $\mathrm{C}$-class equations
@article{SIGMA_2023_19_a57,
author = {Johnson Allen Kessy and Dennis The},
title = {On {Uniqueness} of {Submaximally} {Symmetric} {Vector} {Ordinary} {Differential} {Equations} of $\mathrm{C}${-Class}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2023},
volume = {19},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a57/}
}
TY - JOUR
AU - Johnson Allen Kessy
AU - Dennis The
TI - On Uniqueness of Submaximally Symmetric Vector Ordinary Differential Equations of $\mathrm{C}$-Class
JO - Symmetry, integrability and geometry: methods and applications
PY - 2023
VL - 19
UR - http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a57/
LA - en
ID - SIGMA_2023_19_a57
ER -
%0 Journal Article
%A Johnson Allen Kessy
%A Dennis The
%T On Uniqueness of Submaximally Symmetric Vector Ordinary Differential Equations of $\mathrm{C}$-Class
%J Symmetry, integrability and geometry: methods and applications
%D 2023
%V 19
%U http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a57/
%G en
%F SIGMA_2023_19_a57
Johnson Allen Kessy; Dennis The. On Uniqueness of Submaximally Symmetric Vector Ordinary Differential Equations of $\mathrm{C}$-Class. Symmetry, integrability and geometry: methods and applications, Tome 19 (2023). http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a57/
[1] Bryant R.L., “Two exotic holonomies in dimension four, path geometries, and twistor theory”, Complex Geometry and Lie Theory (Sundance, UT, 1989), Proc. Sympos. Pure Math., 53, American Mathematical Society, Providence, 1991, 33–88 | DOI | MR
[2] Čap A., On canonical Cartan connections associated to filtered G-structures, arXiv: 1707.05627
[3] Čap A., Doubrov B., The D., “On C-class equations”, Comm. Anal. Geom. (to appear) , arXiv: 1709.01130
[4] Čap A., Slovák J., Parabolic geometries I Background and general theory, Math. Surveys Monogr., 154, American Mathematical Society, Providence, 2009 | DOI | MR | Zbl
[5] Cartan É., “Les espaces généralisés et l'intégration de certaines classes d'équations différentielles”, C. R. Hebd. Séances Acad. Sci., 206 (1938), 1689–1693 | Zbl
[6] Casey S., Dunajski M., Tod P., “Twistor geometry of a pair of second order ODEs”, Comm. Math. Phys., 321 (2013), 681–701, arXiv: 1203.4158 | DOI | MR | Zbl
[7] Doubrov B., Three-dimensional homogeneous spaces with non-solvable transformation groups, arXiv: 1704.04393
[8] Doubrov B., “Contact trivialization of ordinary differential equations”, Differential Geometry and Its Applications (Opava, 2001), Math. Publ., 3, Silesian University Opava, Opava, 2001, 73–84 | MR | Zbl
[9] Doubrov B., “Generalized Wilczynski invariants for non-linear ordinary differential equations”, Symmetries and Overdetermined Systems of Partial Differential Equations, IMA Vol. Math. Appl., 144, Springer, New York, 2008, 25–40, arXiv: math.DG/0702251 | DOI | MR | Zbl
[10] Doubrov B., Komrakov B., Morimoto T., “Equivalence of holonomic differential equations”, Lobachevskii J. Math., 3 (1999), 39–71 | MR | Zbl
[11] Doubrov B., Medvedev A., “Fundamental invariants of systems of ODEs of higher order”, Differential Geom. Appl., 35, suppl. (2014), 291–313, arXiv: 1312.0574 | DOI | MR | Zbl
[12] Dunajski M., Tod P., “Paraconformal geometry of $n$th-order ODEs, and exotic holonomy in dimension four”, J. Geom. Phys., 56 (2006), 1790–1809, arXiv: math.DG/0502524 | DOI | MR | Zbl
[13] Godlinski M., Nurowski P., Geometry of third-order ODEs, arXiv: 0902.4129
[14] Godlinski M., Nurowski P., “$\mathrm{GL}(2,\mathbb{R})$ geometry of ODE's”, J. Geom. Phys., 60 (2010), 991–1027, arXiv: 0710.0297 | DOI | MR | Zbl
[15] Grossman D.A., “Torsion-free path geometries and integrable second order ODE systems”, Selecta Math. (N.S.), 6 (2000), 399–442 | DOI | MR | Zbl
[16] Kessy J.A., The D., “Symmetry gaps for higher order ordinary differential equations”, J. Math. Anal. Appl., 516 (2022), 126475, 23 pp., arXiv: 2110.03954 | DOI | MR | Zbl
[17] Kostant B., “Lie algebra cohomology and the generalized Borel–Weil theorem”, Ann. of Math., 74 (1961), 329–387 | DOI | MR | Zbl
[18] Kruglikov B., The D., “The gap phenomenon in parabolic geometries”, J. Reine Angew. Math., 723 (2017), 153–215, arXiv: 1303.1307 | DOI | MR | Zbl
[19] Kryński W., “Paraconformal structures, ordinary differential equations and totally geodesic manifolds”, J. Geom. Phys., 103 (2016), 1–19, arXiv: 1310.6855 | DOI | MR | Zbl
[20] Lie S., “Classification und integration von gewöhnlichen differentialgleichungen zwischen $x$, $y$, die eine Gruppe von Transformationen gestatten”, Math. Ann., 32 (1888), 213–281 | DOI | MR
[21] Lie S., Vorlesungen über continuirliche Gruppen mit geometrischen und anderen Anwendungen, Teubner, Leipzig, 1893 | MR
[22] Medvedev A., “Geometry of third order ODE systems”, Arch. Math. (Brno), 46 (2010), 351–361 | MR | Zbl
[23] Medvedev A., “Third order ODEs systems and its characteristic connections”, SIGMA, 7 (2011), 076, 15 pp., arXiv: 1104.0965 | DOI | MR | Zbl
[24] Olver P.J., Equivalence, invariants, and symmetry, Cambridge University Press, Cambridge, 1995 | DOI | MR | Zbl
[25] Schneider E., “Projectable Lie algebras of vector fields in 3D”, J. Geom. Phys., 132 (2018), 222–229, arXiv: 1803.08878 | DOI | MR | Zbl
[26] Se-ashi Y., “On differential invariants of integrable finite type linear differential equations”, Hokkaido Math. J., 17 (1988), 151–195 | DOI | MR | Zbl
[27] Shah S.W., Mahomed F.M., Azad H., Symmetry classification of scalar $n$th order ordinary differential equations, arXiv: 2208.10395
[28] The D., On uniqueness of submaximally symmetric parabolic geometries, arXiv: 2107.10500
[29] The D., A Cartan-theoretic classification of multiply-transitive $(2,3,5)$-distributions, arXiv: 2205.03387
[30] Winther H., Minimal projective orbits of semi-simple Lie groups, arXiv: 2302.12138