Mots-clés : nonlocal equations
@article{SIGMA_2023_19_a56,
author = {Christopher J. Fewster},
title = {Modified {Green-Hyperbolic} {Operators}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2023},
volume = {19},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a56/}
}
Christopher J. Fewster. Modified Green-Hyperbolic Operators. Symmetry, integrability and geometry: methods and applications, Tome 19 (2023). http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a56/
[1] Ammann B., Lauter R., Nistor V., Vasy A., “Complex powers and non-compact manifolds”, Comm. Partial Differential Equations, 29 (2004), 671–705, arXiv: math.OA/0211305 | DOI | MR | Zbl
[2] Bär C., “Green-hyperbolic operators on globally hyperbolic spacetimes”, Comm. Math. Phys., 333 (2015), 1585–1615, arXiv: 1310.0738 | DOI | MR | Zbl
[3] Bär C., Ginoux N., “Classical and quantum fields on Lorentzian manifolds”, Global Differential Geometry, Springer Proc. Math., 17, Springer, Heidelberg, 2012, 359–400, arXiv: 1104.1158 | DOI | MR | Zbl
[4] Bär C., Wafo R.T., “Initial value problems for wave equations on manifolds”, Math. Phys. Anal. Geom., 18 (2015), 7, 29 pp., arXiv: 1408.4995 | DOI | MR
[5] Bernal A.N., Sánchez M., “Smoothness of time functions and the metric splitting of globally hyperbolic spacetimes”, Comm. Math. Phys., 257 (2005), 43–50, arXiv: gr-qc/0401112 | DOI | MR | Zbl
[6] Bernal A.N., Sánchez M., “Globally hyperbolic spacetimes can be defined as ‘causal’ instead of ‘strongly causal’”, Classical Quantum Gravity, 24 (2007), 745–749, arXiv: gr-qc/0611138 | DOI | MR | Zbl
[7] Dappiaggi C., Finster F., “Linearized fields for causal variational principles: existence theory and causal structure”, Methods Appl. Anal., 27 (2020), 1–56, arXiv: 1811.10587 | DOI | MR | Zbl
[8] Davies E.B., Linear operators and their spectra, Cambridge Stud. Adv. Math., 106, Cambridge University Press, Cambridge, 2007 | DOI | MR | Zbl
[9] Dieudonné J., Schwartz L., “La dualité dans les espaces $\mathcal{F}$ et $(\mathcal{LF})$”, Ann. Inst. Fourier (Grenoble), 1 (1949), 61–101 | DOI | MR | Zbl
[10] Duistermaat J.J., Hörmander L., “Fourier integral operators. II”, Acta Math., 128 (1972), 183–269 | DOI | MR | Zbl
[11] Dütsch M., Fredenhagen K., “The master Ward identity and generalized Schwinger–Dyson equation in classical field theory”, Comm. Math. Phys., 243 (2003), 275–314, arXiv: hep-th/0211242 | DOI | MR | Zbl
[12] Fewster C.J., Jubb I., Ruep M.H., “Asymptotic measurement schemes for every observable of a quantum field theory”, Ann. Henri Poincaré, 24 (2023), 1137–1184, arXiv: 2203.09529 | DOI | MR
[13] Fewster C.J., Verch R., Measurement of quantum fields on a locally noncommutative spacetime, in preparation
[14] Fewster C.J., Verch R., A nonlocal generalization of Green hyperbolicity, in preparation
[15] Geroch R., Spinor structure of space-times in general relativity. I, J. Math. Phys., 9 (1968), 1739–1744 | DOI | MR | Zbl
[16] Gramsch B., “Meromorphie in der Theorie der Fredholmoperatoren mit Anwendungen auf elliptische Differentialoperatoren”, Math. Ann., 188 (1970), 97–112 | DOI | MR | Zbl
[17] Hawkins E., Rejzner K., “The star product in interacting quantum field theory”, Lett. Math. Phys., 110 (2020), 1257–1313, arXiv: 1612.09157 | DOI | MR | Zbl
[18] Hörmander L., “The analysis of linear partial differential operators. I. Distribution theory and Fourier analysis”, Classics Math., Springer, Berlin, 2003 | DOI | MR | Zbl
[19] Hörmander L., The analysis of linear partial differential operators. III. Pseudo-differential operators, Grundlehren Math. Wiss., 274, Springer, Berlin, 2007 | DOI | MR
[20] Horn R.A., Johnson C.R., Matrix analysis, Cambridge University Press, Cambridge, 1990 | DOI | MR | Zbl
[21] Islam O., Strohmaier A., On microlocalization and the construction of Feynman propagators for normally hyperbolic operators, arXiv: 2012.09767 | MR
[22] Kaballo W., “Meromorphic generalized inverses of operator functions”, Indag. Math. (N.S.), 23 (2012), 970–994 | DOI | MR | Zbl
[23] Lechner G., Verch R., “Linear hyperbolic PDEs with noncommutative time”, J. Noncommut. Geom., 9 (2015), 999–1040, arXiv: 1307.1780 | DOI | MR | Zbl
[24] Lechner G., Waldmann S., “Strict deformation quantization of locally convex algebras and modules”, J. Geom. Phys., 99 (2016), 111–144, arXiv: 1109.5950 | DOI | MR | Zbl
[25] Peetre J., “Réctification à l'article “Une caractérisation abstraite des opérateurs différentiels””, Math. Scand., 8 (1960), 116–120 | DOI | MR | Zbl
[26] Reed M., Simon B., Methods of modern mathematical physics. I Functional analysis, 2nd ed., Academic Press, New York, 1980 | MR | Zbl
[27] Seeley R.T., “Complex powers of an elliptic operator”, Singular Integrals (Chicago, Ill., 1966), Proc. Sympos. Pure Math., American Mathematical Society, Providence, R.I., 1967, 288–307 | DOI | MR
[28] Trèves F., Topological vector spaces, distributions and kernels, Dover Publications, Inc., Mineola, NY, 2006 | MR | Zbl