Mots-clés : affine space.
@article{SIGMA_2023_19_a55,
author = {Tomasz Brzezi\'nski and James Papworth},
title = {Affine {Nijenhuis} {Operators} and {Hochschild} {Cohomology} of {Trusses}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2023},
volume = {19},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a55/}
}
Tomasz Brzeziński; James Papworth. Affine Nijenhuis Operators and Hochschild Cohomology of Trusses. Symmetry, integrability and geometry: methods and applications, Tome 19 (2023). http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a55/
[1] Andruszkiewicz R.R., Brzeziński T., Rybołowicz B., “Ideal ring extensions and trusses”, J. Algebra, 600 (2022), 237–278, arXiv: 2101.09484 | DOI | MR | Zbl
[2] Baer R., “Zur Einführung des Scharbegriffs”, J. Reine Angew. Math., 160 (1929), 199–207 | DOI | MR
[3] Benenti S., “Fibrés affines canoniques et mécanique newtonienne, in Action hamiltoniennes de groupes. Troisième théorème de Lie (Lyon, 1986)”, Travaux en Cours, 27, Hermann, Paris, 1988, 13–37 | MR
[4] Breaz S., Brzeziński T., Rybołowicz B., Saracco P., “Heaps of modules and affine spaces”, Ann. Mat. Pura Appl. (to appear) , arXiv: 2203.07268
[5] Brzeziński T., “Trusses: between braces and rings”, Trans. Amer. Math. Soc., 372 (2019), 4149–4176, arXiv: 1710.02870 | DOI | MR | Zbl
[6] Brzeziński T., “Trusses: paragons, ideals and modules”, J. Pure Appl. Algebra, 224 (2020), 106258, 39 pp., arXiv: 1901.07033 | DOI | MR | Zbl
[7] Brzeziński T., “Lie trusses and heaps of Lie affebras”, Proc. Sci., 406 (2022), PoS(CORFU2021)307, 12 pp., arXiv: 2203.12975 | DOI | MR
[8] Cariñena J.F., Grabowski J., Marmo G., “Quantum bi-Hamiltonian systems”, Internat. J. Modern Phys. A, 15 (2000), 4797–4810, arXiv: math-ph/0610011 | DOI | MR | Zbl
[9] Certaine J., “The ternary operation $(abc)=ab^{-1}c$ of a group”, Bull. Amer. Math. Soc., 49 (1943), 869–877 | DOI | MR | Zbl
[10] Gerstenhaber M., “On the deformation of rings and algebras”, Ann. of Math., 79 (1964), 59–103 | DOI | MR | Zbl
[11] Grabowska K., Grabowski J., Urbański P., “Lie brackets on affine bundles”, Ann. Global Anal. Geom., 24 (2003), 101–130, arXiv: math.DG/0203112 | DOI | MR | Zbl
[12] Hochschild G., “On the cohomology groups of an associative algebra”, Ann. of Math., 46 (1945), 58–67 | DOI | MR | Zbl
[13] Kosmann-Schwarzbach Y., “Nijenhuis structures on Courant algebroids”, Bull. Braz. Math. Soc. (N.S.), 42 (2011), 625–649, arXiv: 1102.1410 | DOI | MR | Zbl
[14] Magri F., “A simple model of the integrable Hamiltonian equation”, J. Math. Phys., 19 (1978), 1156–1162 | DOI | MR | Zbl
[15] Massa E., Vignolo S., Bruno D., “Non-holonomic Lagrangian and Hamiltonian mechanics: an intrinsic approach”, J. Phys. A, 35 (2002), 6713–6742 | DOI | MR | Zbl
[16] Prüfer H., “Theorie der Abelschen Gruppen”, Math. Z., 20 (1924), 165–187 | DOI | MR
[17] Tulczyjew W.M., “Frame independence of analytical mechanics”, Atti Accad. Sci. Torino Cl. Sci. Fis. Mat. Natur., 119 (1985), 273–279 | MR | Zbl
[18] Urbański P., “Affine Poisson structures in analytical mechanics”, Quantization and Infinite-Dimensional Systems (Bialowieza, 1993), Plenum, New York, 1994, 123–129 | DOI | MR | Zbl
[19] Weinstein A., “A universal phase space for particles in Yang–Mills fields”, Lett. Math. Phys., 2 (1978), 417–420 | DOI | MR | Zbl