Mots-clés : moduli space.
@article{SIGMA_2023_19_a53,
author = {Christoph Adam and Chris Halcrow and Katarzyna Oles and Tomasz Romanczukiewicz and Andrzej Wereszczy\'nski},
title = {Moduli {Space} for {Kink} {Collisions} with {Moving} {Center} of {Mass}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2023},
volume = {19},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a53/}
}
TY - JOUR AU - Christoph Adam AU - Chris Halcrow AU - Katarzyna Oles AU - Tomasz Romanczukiewicz AU - Andrzej Wereszczyński TI - Moduli Space for Kink Collisions with Moving Center of Mass JO - Symmetry, integrability and geometry: methods and applications PY - 2023 VL - 19 UR - http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a53/ LA - en ID - SIGMA_2023_19_a53 ER -
%0 Journal Article %A Christoph Adam %A Chris Halcrow %A Katarzyna Oles %A Tomasz Romanczukiewicz %A Andrzej Wereszczyński %T Moduli Space for Kink Collisions with Moving Center of Mass %J Symmetry, integrability and geometry: methods and applications %D 2023 %V 19 %U http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a53/ %G en %F SIGMA_2023_19_a53
Christoph Adam; Chris Halcrow; Katarzyna Oles; Tomasz Romanczukiewicz; Andrzej Wereszczyński. Moduli Space for Kink Collisions with Moving Center of Mass. Symmetry, integrability and geometry: methods and applications, Tome 19 (2023). http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a53/
[1] Adam C., Dorey P., Martín-Caro A.G., Huidobro M., Oles K., Romanczukiewicz T., Shnir Y., Wereszczynski A., “Multikink scattering in the $\phi^6$ model revisited”, Phys. Rev. D, 106 (2022), 125003, 18 pp., arXiv: 2209.08849 | DOI | MR
[2] Adam C., García Martín-Caro A., Huidobro M., Oles K., Romanczukiewicz T., Wereszczynski A., “Constrained instantons and kink-antikink collisions”, Phys. Lett. B, 838 (2023), 137728, 7 pp., arXiv: 2212.11936 | DOI | MR
[3] Adam C., Manton N.S., Oles K., Romanczukiewicz T., Wereszczynski A., “Relativistic moduli space for kink collisions”, Phys. Rev. D, 105 (2022), 065012, 18 pp., arXiv: 2111.06790 | DOI | MR
[4] Affleck I.K., Manton N.S., “Monopole pair production in a magnetic field”, Nuclear Phys. B, 194 (1982), 38–64 | DOI
[5] Alonso Izquierdo A., Queiroga-Nunes J., Nieto L.M., “Scattering between wobbling kinks”, Phys. Rev. D, 103 (2021), 045003, 16 pp., arXiv: 2007.15517 | DOI | MR
[6] Atiyah M., Hitchin N., The geometry and dynamics of magnetic monopoles, M.B. Porter Lectures, Princeton University Press, Princeton, NJ, 1988 | DOI | MR | Zbl
[7] Bogomolny E.B., “The stability of classical solutions”, Sov. J. Nuclear Phys., 24 (1976), 449–454 | MR
[8] Campbell D.K., Schonfeld J.F., Wingate C.A., “Resonance structure in kink-antikink interactions in $\phi^4$ theory”, Phys. D, 9 (1983), 1–32 | DOI
[9] Caputo J.G., Flytzanis N., Ragiadakos C.N., “Removal of singularities in the collective coordinate description of localised solutions of Klein–Gordon models”, J. Phys. Soc. Japan, 63 (1994), 2523–2531 | DOI | MR | Zbl
[10] Dorey P., Mersh K., Romanczukiewicz T., Shnir Y., “Kink-antikink collisions in the $\phi^{6}$ model”, Phys. Rev. Lett., 107 (2011), 091602, 5 pp., arXiv: 1101.5951 | DOI
[11] Evslin J., “Manifestly finite derivation of the quantum kink mass”, J. High Energy Phys., 2019:11 (2019), 161, 31 pp., arXiv: 1908.06710 | DOI | MR
[12] Halcrow C., “Vibrational quantisation of the $B=7$ skyrmion”, Nuclear Phys. B, 904 (2016), 106–123, arXiv: 1511.00682 | DOI | MR | Zbl
[13] Halcrow C., “Quantum soliton scattering manifolds”, J. High Energy Phys., 2020:7 (2020), 182, 23 pp., arXiv: 2004.14167 | DOI | MR | Zbl
[14] Halcrow C., Harland D., “Nucleon-nucleon potential from instanton holonomies”, Phys. Rev. D, 106 (2022), 094011, 21 pp., arXiv: 2208.04863 | DOI | MR
[15] Halcrow C., Winyard T., “A consistent two-skyrmion configuration space from instantons”, J. High Energy Phys., 2021:12 (2021), 039, 23 pp., arXiv: 2103.15669 | DOI | MR
[16] Kevrekidis P.G., Goodman R.H., Four decades of kink interactions in nonlinear Klein–Gordon models: A crucial typo, recent developments and the challenges ahead, arXiv: 1909.03128
[17] Leese R.A., Manton N.S., Schroers B.J., “Attractive channel Skyrmions and the deuteron”, Nuclear Phys. B, 442 (1995), 228–267, arXiv: hep-ph/9502405 | DOI
[18] Manton N.S., “The force between 't Hooft–Polyakov monopoles”, Nuclear Phys. B, 126 (1977), 525–541 | DOI | MR
[19] Manton N.S., “A remark on the scattering of BPS monopoles”, Phys. Lett. B, 110 (1982), 54–56 | DOI | MR | Zbl
[20] Manton N.S., Oles K., Romanczukiewicz T., Wereszczynski A., “Collective coordinate model of kink-antikink collisions in $\phi^4$ theory”, Phys. Rev. Lett., 127 (2021), 071601, 5 pp., arXiv: 2106.05153 | DOI | MR
[21] Manton N.S., Oles K., Romanczukiewicz T., Wereszczynski A., “Kink moduli spaces: collective coordinates reconsidered”, Phys. Rev. D, 103 (2021), 025024, 20 pp., arXiv: 2008.01026 | DOI | MR
[22] Manton N.S., Sutcliffe P.M., Topological solitons, Cambridge Monogr. Math. Phys., Cambridge University Press, Cambridge, 2004 | DOI | MR | Zbl
[23] Rice M.J., “Physical dynamics of solitons”, Phys. Rev. B, 28 (1983), 3587–3589 | DOI
[24] Samols T.M., “Vortex scattering”, Comm. Math. Phys., 145 (1992), 149–179 | DOI | MR | Zbl
[25] Schroers B.J., “Quantum scattering of BPS monopoles at low energy”, Nuclear Phys. B, 367 (1991), 177–214 | DOI | MR
[26] Sugiyama T., “Kink-antikink collisions in the two-dimensional $\phi^4$ model”, Prog. Theor. Phys., 61 (1979), 1550–1563 | DOI
[27] Sutcliffe P.M., “Instanton moduli and topological soliton dynamics”, Nuclear Phys. B, 431 (1994), 97–118, arXiv: hep-th/9408168 | DOI | MR | Zbl
[28] Takyi I., Weigel H., “Collective coordinates in one-dimensional soliton models revisited”, Phys. Rev. D, 94 (2016), 085008, 11 pp., arXiv: 1609.06833 | DOI