Moduli Space for Kink Collisions with Moving Center of Mass
Symmetry, integrability and geometry: methods and applications, Tome 19 (2023) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We apply the collective coordinate model framework to describe collisions of a kink and an antikink with nonzero total momentum, i.e., when the solitons possess different velocities. The minimal moduli space with only two coordinates (the mutual distance and the position of the center of mass) is of a wormhole type, whose throat shrinks to a point for symmetric kinks. In this case, a singularity is formed. For non-zero momentum, it prohibits solutions where the solitons pass through each other. We show that this unphysical feature can be cured by enlarging the dimension of the moduli space, e.g., by the inclusion of internal modes.
Keywords: topological solitons, collective coordinates method
Mots-clés : moduli space.
@article{SIGMA_2023_19_a53,
     author = {Christoph Adam and Chris Halcrow and Katarzyna Oles and Tomasz Romanczukiewicz and Andrzej Wereszczy\'nski},
     title = {Moduli {Space} for {Kink} {Collisions} with {Moving} {Center} of {Mass}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2023},
     volume = {19},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a53/}
}
TY  - JOUR
AU  - Christoph Adam
AU  - Chris Halcrow
AU  - Katarzyna Oles
AU  - Tomasz Romanczukiewicz
AU  - Andrzej Wereszczyński
TI  - Moduli Space for Kink Collisions with Moving Center of Mass
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2023
VL  - 19
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a53/
LA  - en
ID  - SIGMA_2023_19_a53
ER  - 
%0 Journal Article
%A Christoph Adam
%A Chris Halcrow
%A Katarzyna Oles
%A Tomasz Romanczukiewicz
%A Andrzej Wereszczyński
%T Moduli Space for Kink Collisions with Moving Center of Mass
%J Symmetry, integrability and geometry: methods and applications
%D 2023
%V 19
%U http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a53/
%G en
%F SIGMA_2023_19_a53
Christoph Adam; Chris Halcrow; Katarzyna Oles; Tomasz Romanczukiewicz; Andrzej Wereszczyński. Moduli Space for Kink Collisions with Moving Center of Mass. Symmetry, integrability and geometry: methods and applications, Tome 19 (2023). http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a53/

[1] Adam C., Dorey P., Martín-Caro A.G., Huidobro M., Oles K., Romanczukiewicz T., Shnir Y., Wereszczynski A., “Multikink scattering in the $\phi^6$ model revisited”, Phys. Rev. D, 106 (2022), 125003, 18 pp., arXiv: 2209.08849 | DOI | MR

[2] Adam C., García Martín-Caro A., Huidobro M., Oles K., Romanczukiewicz T., Wereszczynski A., “Constrained instantons and kink-antikink collisions”, Phys. Lett. B, 838 (2023), 137728, 7 pp., arXiv: 2212.11936 | DOI | MR

[3] Adam C., Manton N.S., Oles K., Romanczukiewicz T., Wereszczynski A., “Relativistic moduli space for kink collisions”, Phys. Rev. D, 105 (2022), 065012, 18 pp., arXiv: 2111.06790 | DOI | MR

[4] Affleck I.K., Manton N.S., “Monopole pair production in a magnetic field”, Nuclear Phys. B, 194 (1982), 38–64 | DOI

[5] Alonso Izquierdo A., Queiroga-Nunes J., Nieto L.M., “Scattering between wobbling kinks”, Phys. Rev. D, 103 (2021), 045003, 16 pp., arXiv: 2007.15517 | DOI | MR

[6] Atiyah M., Hitchin N., The geometry and dynamics of magnetic monopoles, M.B. Porter Lectures, Princeton University Press, Princeton, NJ, 1988 | DOI | MR | Zbl

[7] Bogomolny E.B., “The stability of classical solutions”, Sov. J. Nuclear Phys., 24 (1976), 449–454 | MR

[8] Campbell D.K., Schonfeld J.F., Wingate C.A., “Resonance structure in kink-antikink interactions in $\phi^4$ theory”, Phys. D, 9 (1983), 1–32 | DOI

[9] Caputo J.G., Flytzanis N., Ragiadakos C.N., “Removal of singularities in the collective coordinate description of localised solutions of Klein–Gordon models”, J. Phys. Soc. Japan, 63 (1994), 2523–2531 | DOI | MR | Zbl

[10] Dorey P., Mersh K., Romanczukiewicz T., Shnir Y., “Kink-antikink collisions in the $\phi^{6}$ model”, Phys. Rev. Lett., 107 (2011), 091602, 5 pp., arXiv: 1101.5951 | DOI

[11] Evslin J., “Manifestly finite derivation of the quantum kink mass”, J. High Energy Phys., 2019:11 (2019), 161, 31 pp., arXiv: 1908.06710 | DOI | MR

[12] Halcrow C., “Vibrational quantisation of the $B=7$ skyrmion”, Nuclear Phys. B, 904 (2016), 106–123, arXiv: 1511.00682 | DOI | MR | Zbl

[13] Halcrow C., “Quantum soliton scattering manifolds”, J. High Energy Phys., 2020:7 (2020), 182, 23 pp., arXiv: 2004.14167 | DOI | MR | Zbl

[14] Halcrow C., Harland D., “Nucleon-nucleon potential from instanton holonomies”, Phys. Rev. D, 106 (2022), 094011, 21 pp., arXiv: 2208.04863 | DOI | MR

[15] Halcrow C., Winyard T., “A consistent two-skyrmion configuration space from instantons”, J. High Energy Phys., 2021:12 (2021), 039, 23 pp., arXiv: 2103.15669 | DOI | MR

[16] Kevrekidis P.G., Goodman R.H., Four decades of kink interactions in nonlinear Klein–Gordon models: A crucial typo, recent developments and the challenges ahead, arXiv: 1909.03128

[17] Leese R.A., Manton N.S., Schroers B.J., “Attractive channel Skyrmions and the deuteron”, Nuclear Phys. B, 442 (1995), 228–267, arXiv: hep-ph/9502405 | DOI

[18] Manton N.S., “The force between 't Hooft–Polyakov monopoles”, Nuclear Phys. B, 126 (1977), 525–541 | DOI | MR

[19] Manton N.S., “A remark on the scattering of BPS monopoles”, Phys. Lett. B, 110 (1982), 54–56 | DOI | MR | Zbl

[20] Manton N.S., Oles K., Romanczukiewicz T., Wereszczynski A., “Collective coordinate model of kink-antikink collisions in $\phi^4$ theory”, Phys. Rev. Lett., 127 (2021), 071601, 5 pp., arXiv: 2106.05153 | DOI | MR

[21] Manton N.S., Oles K., Romanczukiewicz T., Wereszczynski A., “Kink moduli spaces: collective coordinates reconsidered”, Phys. Rev. D, 103 (2021), 025024, 20 pp., arXiv: 2008.01026 | DOI | MR

[22] Manton N.S., Sutcliffe P.M., Topological solitons, Cambridge Monogr. Math. Phys., Cambridge University Press, Cambridge, 2004 | DOI | MR | Zbl

[23] Rice M.J., “Physical dynamics of solitons”, Phys. Rev. B, 28 (1983), 3587–3589 | DOI

[24] Samols T.M., “Vortex scattering”, Comm. Math. Phys., 145 (1992), 149–179 | DOI | MR | Zbl

[25] Schroers B.J., “Quantum scattering of BPS monopoles at low energy”, Nuclear Phys. B, 367 (1991), 177–214 | DOI | MR

[26] Sugiyama T., “Kink-antikink collisions in the two-dimensional $\phi^4$ model”, Prog. Theor. Phys., 61 (1979), 1550–1563 | DOI

[27] Sutcliffe P.M., “Instanton moduli and topological soliton dynamics”, Nuclear Phys. B, 431 (1994), 97–118, arXiv: hep-th/9408168 | DOI | MR | Zbl

[28] Takyi I., Weigel H., “Collective coordinates in one-dimensional soliton models revisited”, Phys. Rev. D, 94 (2016), 085008, 11 pp., arXiv: 1609.06833 | DOI