Single-Valued Killing Fields of a Meromorphic Affine Connection and Classification
Symmetry, integrability and geometry: methods and applications, Tome 19 (2023) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We give a geometric condition on a meromorphic affine connection for its Killing vector fields to be single valued. More precisely, this condition relies on the pole of the connection and its geodesics, and defines a subcategory. To this end, we use the equivalence between these objects and meromorphic affine Cartan geometries. The proof of the previous result is then a consequence of a more general result linking the distinguished curves of meromorphic Cartan geometries, their poles and their infinitesimal automorphisms, which is the main purpose of the paper. This enables to extend the classification result from [Biswas I., Dumitrescu S., McKay B., Épijournal Géom. Algébrique 3 (2019), 19, 10 pages, arXiv:1804.08949] to the subcategory of meromorphic affine connection described before.
Keywords: meromorphic affine connections, Killing vector fields, infinitesimal automorphisms, Cartan geometries.
@article{SIGMA_2023_19_a51,
     author = {Alexis Garcia},
     title = {Single-Valued {Killing} {Fields} of a {Meromorphic} {Affine} {Connection} and {Classification}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2023},
     volume = {19},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a51/}
}
TY  - JOUR
AU  - Alexis Garcia
TI  - Single-Valued Killing Fields of a Meromorphic Affine Connection and Classification
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2023
VL  - 19
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a51/
LA  - en
ID  - SIGMA_2023_19_a51
ER  - 
%0 Journal Article
%A Alexis Garcia
%T Single-Valued Killing Fields of a Meromorphic Affine Connection and Classification
%J Symmetry, integrability and geometry: methods and applications
%D 2023
%V 19
%U http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a51/
%G en
%F SIGMA_2023_19_a51
Alexis Garcia. Single-Valued Killing Fields of a Meromorphic Affine Connection and Classification. Symmetry, integrability and geometry: methods and applications, Tome 19 (2023). http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a51/

[1] Atiyah M.F., “Complex analytic connections in fibre bundles”, Trans. Amer. Math. Soc., 85 (1957), 181–207 | DOI | MR | Zbl

[2] Bernstein J., Lunts V., Equivariant sheaves and functors, Lecture Notes in Math., 1578, Springer, Berlin, 1994 | DOI | MR | Zbl

[3] Biswas I., Dumitrescu S., “Branched holomorphic Cartan geometries and Calabi–Yau manifolds”, Int. Math. Res. Not., 2019 (2019), 7428–7458, arXiv: 1706.04407 | DOI | MR | Zbl

[4] Biswas I., Dumitrescu S., McKay B., “Cartan geometries on complex manifolds of algebraic dimension zero”, Épijournal Géom. Algébrique, 3 (2019), 19, 10 pp., arXiv: 1804.08949 | DOI | MR

[5] Blázquez-Sanz D., Casale G., “Parallelisms Lie connections”, SIGMA, 13 (2017), 086, 28 pp., arXiv: 1603.07915 | DOI | MR | Zbl

[6] Brunella M., Birational geometry of foliations, IMPA Monographs, 1, Springer, Cham, 2015 | DOI | MR | Zbl

[7] Cantat S., “Endomorphismes des variétés homogènes”, Enseign. Math., 49 (2003), 237–262 | DOI | MR | Zbl

[8] Čap A., “Infinitesimal automorphisms and deformations of parabolic geometries”, J. Eur. Math. Soc., 10 (2008), 415–437, arXiv: math.DG/0508535 | DOI | MR

[9] Čap A., Slovák J., Parabolic geometries, v. I, Math. Surveys Monogr., 154, Background and general theory, American Mathematical Society, Providence, RI, 2009 | DOI | MR | Zbl

[10] Cartan E., “Les groupes d'holonomie des espaces généralisés”, Acta Math., 48 (1926), 1–42 | DOI

[11] Chevalley C., “Sur certains groupes simples”, Tohoku Math. J., 7 (1955), 14–66 | DOI | MR | Zbl

[12] Deligne P., Équations différentielles à points singuliers réguliers, Lecture Notes in Math., 161, Springer, Berlin, 1970 | DOI | MR

[13] Dumitrescu S., “Métriques riemanniennes holomorphes en petite dimension”, Ann. Inst. Fourier (Grenoble), 51 (2001), 1663–1690 | DOI | MR | Zbl

[14] Dumitrescu S., “Killing fields of holomorphic Cartan geometries”, Monatsh. Math., 161 (2010), 145–154, arXiv: 0902.2193 | DOI | MR | Zbl

[15] Dumitrescu S., “Meromorphic almost rigid geometric structures”, Geometry, Rigidity, and Group Actions, Chicago Lectures in Math., University Chicago Press, Chicago, IL, 2011, 32–58, arXiv: 0805.4506 | MR | Zbl

[16] Dumitrescu S., “An invitation to quasihomogeneous rigid geometric structures”, Bridging Algebra, Geometry, and Topology, Springer Proc. Math. Stat., 96, Springer, Cham, 2014, 107–123 | DOI | MR | Zbl

[17] Ehresmann C., “Les connexions infinitésimales dans un espace fibré différentiable”, v. 1, Séminaire Bourbaki, 24, Soc. Math. France, Paris, 1995, 153–168 | MR

[18] Gauduchon P., “La $1$-forme de torsion d'une variété hermitienne compacte”, Math. Ann., 267 (1984), 495–518 | DOI | MR | Zbl

[19] Grauert H., Peternell T., Remmert R., Several complex variables, v. VII, Encycl. Math. Sci., 74, Sheaf-theoretical methods in complex analysis, Springer, Berlin, 1994 | DOI | MR | Zbl

[20] Gromov M., “Rigid transformations groups”, Géométrie différentielle (Paris, 1986), Travaux en Cours, 33, Hermann, Paris, 1988, 65–139 | MR

[21] Hotta R., Takeuchi K., Tanisaki T., $D$-modules, perverse sheaves, and representation theory, Progr. Math., 236, Birkhäuser, Boston, MA, 2008 | DOI | MR | Zbl

[22] Inoue M., Kobayashi S., Ochiai T., “Holomorphic affine connections on compact complex surfaces”, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 27 (1980), 247–264 | MR | Zbl

[23] LeBrun C., “Spaces of complex null geodesics in complex-Riemannian geometry”, Trans. Amer. Math. Soc., 278 (1983), 209–231 | DOI | MR | Zbl

[24] McKay B., “Characteristic forms of complex Cartan geometries”, Adv. Geom., 11 (2011), 139–168, arXiv: 0704.2555 | DOI | MR

[25] Nomizu K., “On local and global existence of Killing vector fields”, Ann. of Math., 72 (1960), 105–120 | DOI | MR | Zbl

[26] Sabbah C., Isomonodromic deformations and Frobenius manifolds. An introduction, Universitext, Springer, London, 2007 | DOI | MR | Zbl

[27] Sharpe R.W., Differential geometry. Cartan's generalization of Klein's Erlangen program, Grad. Texts in Math., 166, Springer, New York, 1997 | MR

[28] Wolf J.A., Spaces of constant curvature, 6th ed., AMS Chelsea Publishing, Providence, RI, 2011 | DOI | MR | Zbl