@article{SIGMA_2023_19_a51,
author = {Alexis Garcia},
title = {Single-Valued {Killing} {Fields} of a {Meromorphic} {Affine} {Connection} and {Classification}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2023},
volume = {19},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a51/}
}
Alexis Garcia. Single-Valued Killing Fields of a Meromorphic Affine Connection and Classification. Symmetry, integrability and geometry: methods and applications, Tome 19 (2023). http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a51/
[1] Atiyah M.F., “Complex analytic connections in fibre bundles”, Trans. Amer. Math. Soc., 85 (1957), 181–207 | DOI | MR | Zbl
[2] Bernstein J., Lunts V., Equivariant sheaves and functors, Lecture Notes in Math., 1578, Springer, Berlin, 1994 | DOI | MR | Zbl
[3] Biswas I., Dumitrescu S., “Branched holomorphic Cartan geometries and Calabi–Yau manifolds”, Int. Math. Res. Not., 2019 (2019), 7428–7458, arXiv: 1706.04407 | DOI | MR | Zbl
[4] Biswas I., Dumitrescu S., McKay B., “Cartan geometries on complex manifolds of algebraic dimension zero”, Épijournal Géom. Algébrique, 3 (2019), 19, 10 pp., arXiv: 1804.08949 | DOI | MR
[5] Blázquez-Sanz D., Casale G., “Parallelisms Lie connections”, SIGMA, 13 (2017), 086, 28 pp., arXiv: 1603.07915 | DOI | MR | Zbl
[6] Brunella M., Birational geometry of foliations, IMPA Monographs, 1, Springer, Cham, 2015 | DOI | MR | Zbl
[7] Cantat S., “Endomorphismes des variétés homogènes”, Enseign. Math., 49 (2003), 237–262 | DOI | MR | Zbl
[8] Čap A., “Infinitesimal automorphisms and deformations of parabolic geometries”, J. Eur. Math. Soc., 10 (2008), 415–437, arXiv: math.DG/0508535 | DOI | MR
[9] Čap A., Slovák J., Parabolic geometries, v. I, Math. Surveys Monogr., 154, Background and general theory, American Mathematical Society, Providence, RI, 2009 | DOI | MR | Zbl
[10] Cartan E., “Les groupes d'holonomie des espaces généralisés”, Acta Math., 48 (1926), 1–42 | DOI
[11] Chevalley C., “Sur certains groupes simples”, Tohoku Math. J., 7 (1955), 14–66 | DOI | MR | Zbl
[12] Deligne P., Équations différentielles à points singuliers réguliers, Lecture Notes in Math., 161, Springer, Berlin, 1970 | DOI | MR
[13] Dumitrescu S., “Métriques riemanniennes holomorphes en petite dimension”, Ann. Inst. Fourier (Grenoble), 51 (2001), 1663–1690 | DOI | MR | Zbl
[14] Dumitrescu S., “Killing fields of holomorphic Cartan geometries”, Monatsh. Math., 161 (2010), 145–154, arXiv: 0902.2193 | DOI | MR | Zbl
[15] Dumitrescu S., “Meromorphic almost rigid geometric structures”, Geometry, Rigidity, and Group Actions, Chicago Lectures in Math., University Chicago Press, Chicago, IL, 2011, 32–58, arXiv: 0805.4506 | MR | Zbl
[16] Dumitrescu S., “An invitation to quasihomogeneous rigid geometric structures”, Bridging Algebra, Geometry, and Topology, Springer Proc. Math. Stat., 96, Springer, Cham, 2014, 107–123 | DOI | MR | Zbl
[17] Ehresmann C., “Les connexions infinitésimales dans un espace fibré différentiable”, v. 1, Séminaire Bourbaki, 24, Soc. Math. France, Paris, 1995, 153–168 | MR
[18] Gauduchon P., “La $1$-forme de torsion d'une variété hermitienne compacte”, Math. Ann., 267 (1984), 495–518 | DOI | MR | Zbl
[19] Grauert H., Peternell T., Remmert R., Several complex variables, v. VII, Encycl. Math. Sci., 74, Sheaf-theoretical methods in complex analysis, Springer, Berlin, 1994 | DOI | MR | Zbl
[20] Gromov M., “Rigid transformations groups”, Géométrie différentielle (Paris, 1986), Travaux en Cours, 33, Hermann, Paris, 1988, 65–139 | MR
[21] Hotta R., Takeuchi K., Tanisaki T., $D$-modules, perverse sheaves, and representation theory, Progr. Math., 236, Birkhäuser, Boston, MA, 2008 | DOI | MR | Zbl
[22] Inoue M., Kobayashi S., Ochiai T., “Holomorphic affine connections on compact complex surfaces”, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 27 (1980), 247–264 | MR | Zbl
[23] LeBrun C., “Spaces of complex null geodesics in complex-Riemannian geometry”, Trans. Amer. Math. Soc., 278 (1983), 209–231 | DOI | MR | Zbl
[24] McKay B., “Characteristic forms of complex Cartan geometries”, Adv. Geom., 11 (2011), 139–168, arXiv: 0704.2555 | DOI | MR
[25] Nomizu K., “On local and global existence of Killing vector fields”, Ann. of Math., 72 (1960), 105–120 | DOI | MR | Zbl
[26] Sabbah C., Isomonodromic deformations and Frobenius manifolds. An introduction, Universitext, Springer, London, 2007 | DOI | MR | Zbl
[27] Sharpe R.W., Differential geometry. Cartan's generalization of Klein's Erlangen program, Grad. Texts in Math., 166, Springer, New York, 1997 | MR
[28] Wolf J.A., Spaces of constant curvature, 6th ed., AMS Chelsea Publishing, Providence, RI, 2011 | DOI | MR | Zbl