Mots-clés : Skyrmions
@article{SIGMA_2023_19_a50,
author = {Paul Sutcliffe},
title = {A {Skyrme} {Model} with {Novel} {Chiral} {Symmetry} {Breaking}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2023},
volume = {19},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a50/}
}
Paul Sutcliffe. A Skyrme Model with Novel Chiral Symmetry Breaking. Symmetry, integrability and geometry: methods and applications, Tome 19 (2023). http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a50/
[1] Adam C., Naya C., Sanchez-Guillen J., Wereszczynski A., “Bogomol'nyi–Prasad–Sommerfield Skyrme model and nuclear binding energies”, Phys. Rev. Lett., 111 (2013), 232501, 5 pp., arXiv: 1312.2960 | DOI
[2] Adam C., Oles K., Wereszczynski A., “The dielectric Skyrme model”, Phys. Lett. B, 807 (2020), 135560, 6 pp., arXiv: 2005.00018 | DOI | MR | Zbl
[3] Adam C., Sanchez-Guillen J., Wereszczynski A., “A Skyrme-type proposal for baryonic matter”, Phys. Lett. B, 691 (2010), 105–110, arXiv: 1001.4544 | DOI
[4] Atiyah M.F., Manton N.S., “Skyrmions from instantons”, Phys. Lett. B, 222 (1989), 438–442 | DOI | MR
[5] Battye R.A., Sutcliffe P.M., “Skyrmions, fullerenes and rational maps”, Rev. Math. Phys., 14 (2002), 29–85, arXiv: hep-th/0103026 | DOI | MR | Zbl
[6] Faddeev L.D., “Some comments on the many-dimensional solitons”, Lett. Math. Phys., 1 (1976), 289–293 | DOI | MR
[7] Ferreira L.A., “Exact self-duality in a modified Skyrme model”, J. High Energy Phys., 2017:7 (2017), 039, 13 pp., arXiv: 1705.01824 | DOI | MR
[8] Ferreira L.A., Livramento L.R., “Quasi-self-dual Skyrme model”, Phys. Rev. D, 106 (2022), 045003, 17 pp., arXiv: 2205.13002 | DOI | MR
[9] Gillard M., Harland D., Speight M., “Skyrmions with low binding energies”, Nuclear Phys. B, 895 (2015), 272–287, arXiv: 1501.05455 | DOI | MR | Zbl
[10] Gudnason S.B., “Loosening up the Skyrme model”, Phys. Rev. D, 93 (20216), 065048, 19 pp., arXiv: 1601.05024 | DOI | MR
[11] Gudnason S.B., Speight J.M., “Realistic classical binding energies in the $\omega$-Skyrme model”, J. High Energy Phys., 2020:7 (2020), 184, 42 pp., arXiv: 2004.12862 | DOI | MR | Zbl
[12] Harland D., “Topological energy bounds for the Skyrme and Faddeev models with massive pions”, Nuclear Phys. B, 728 (2014), 518–523, arXiv: 1311.2403 | DOI | Zbl
[13] Houghton C.J., Manton N.S., Sutcliffe P.M., “Rational maps, monopoles and skyrmions”, Nuclear Phys. B, 510 (1998), 507–537, arXiv: hep-th/9705151 | DOI | MR | Zbl
[14] Manton N.S., Skyrmions – a theory of nuclei, World Scientific, London, 2022 | DOI
[15] Naya C., “Skyrmions and clustering in light nuclei”, Phys. Rev. Lett., 121 (2018), 232002, 5 pp., arXiv: 1811.02064 | DOI
[16] Naya C., Sutcliffe P., “Skyrmions in models with pions and rho mesons”, J. High Energy Phys., 2018:5 (2018), 174, 14 pp., arXiv: 1803.06098 | DOI | MR
[17] Skyrme T.H.R., “A unified field theory of mesons and baryons”, Nuclear Phys., 31 (1962), 556–569 | DOI | MR
[18] Sutcliffe P., “Skyrmions, instantons and holography”, J. High Energy Phys., 2010:8 (2010), 019, 25 pp., arXiv: 1003.0023 | DOI | MR | Zbl
[19] Sutcliffe P., “Skyrmions in a truncated BPS theory”, J. High Energy Phys., 2011:4 (2011), 045, 13 pp., arXiv: 1101.2402 | DOI | MR | Zbl