A Skyrme Model with Novel Chiral Symmetry Breaking
Symmetry, integrability and geometry: methods and applications, Tome 19 (2023) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An extension of the Skyrme model is presented in which derivative terms are added that break chiral symmetry to isospin symmetry. The theory contains just one new parameter and it reduces to the standard Skyrme model when this symmetry breaking parameter vanishes. The same Faddeev–Bogomolny energy bound applies for all parameter values, but the parameter can be tuned so that the energy of the single Skyrmion is much closer to the bound than in the standard Skyrme model. Applying the rational map approximation to multi-Skyrmions suggests that, for a suitable value of the symmetry breaking parameter, binding energies in this theory may be significantly more realistic than in the standard Skyrme model.
Keywords: chiral symmetry breaking.
Mots-clés : Skyrmions
@article{SIGMA_2023_19_a50,
     author = {Paul Sutcliffe},
     title = {A {Skyrme} {Model} with {Novel} {Chiral} {Symmetry} {Breaking}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2023},
     volume = {19},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a50/}
}
TY  - JOUR
AU  - Paul Sutcliffe
TI  - A Skyrme Model with Novel Chiral Symmetry Breaking
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2023
VL  - 19
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a50/
LA  - en
ID  - SIGMA_2023_19_a50
ER  - 
%0 Journal Article
%A Paul Sutcliffe
%T A Skyrme Model with Novel Chiral Symmetry Breaking
%J Symmetry, integrability and geometry: methods and applications
%D 2023
%V 19
%U http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a50/
%G en
%F SIGMA_2023_19_a50
Paul Sutcliffe. A Skyrme Model with Novel Chiral Symmetry Breaking. Symmetry, integrability and geometry: methods and applications, Tome 19 (2023). http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a50/

[1] Adam C., Naya C., Sanchez-Guillen J., Wereszczynski A., “Bogomol'nyi–Prasad–Sommerfield Skyrme model and nuclear binding energies”, Phys. Rev. Lett., 111 (2013), 232501, 5 pp., arXiv: 1312.2960 | DOI

[2] Adam C., Oles K., Wereszczynski A., “The dielectric Skyrme model”, Phys. Lett. B, 807 (2020), 135560, 6 pp., arXiv: 2005.00018 | DOI | MR | Zbl

[3] Adam C., Sanchez-Guillen J., Wereszczynski A., “A Skyrme-type proposal for baryonic matter”, Phys. Lett. B, 691 (2010), 105–110, arXiv: 1001.4544 | DOI

[4] Atiyah M.F., Manton N.S., “Skyrmions from instantons”, Phys. Lett. B, 222 (1989), 438–442 | DOI | MR

[5] Battye R.A., Sutcliffe P.M., “Skyrmions, fullerenes and rational maps”, Rev. Math. Phys., 14 (2002), 29–85, arXiv: hep-th/0103026 | DOI | MR | Zbl

[6] Faddeev L.D., “Some comments on the many-dimensional solitons”, Lett. Math. Phys., 1 (1976), 289–293 | DOI | MR

[7] Ferreira L.A., “Exact self-duality in a modified Skyrme model”, J. High Energy Phys., 2017:7 (2017), 039, 13 pp., arXiv: 1705.01824 | DOI | MR

[8] Ferreira L.A., Livramento L.R., “Quasi-self-dual Skyrme model”, Phys. Rev. D, 106 (2022), 045003, 17 pp., arXiv: 2205.13002 | DOI | MR

[9] Gillard M., Harland D., Speight M., “Skyrmions with low binding energies”, Nuclear Phys. B, 895 (2015), 272–287, arXiv: 1501.05455 | DOI | MR | Zbl

[10] Gudnason S.B., “Loosening up the Skyrme model”, Phys. Rev. D, 93 (20216), 065048, 19 pp., arXiv: 1601.05024 | DOI | MR

[11] Gudnason S.B., Speight J.M., “Realistic classical binding energies in the $\omega$-Skyrme model”, J. High Energy Phys., 2020:7 (2020), 184, 42 pp., arXiv: 2004.12862 | DOI | MR | Zbl

[12] Harland D., “Topological energy bounds for the Skyrme and Faddeev models with massive pions”, Nuclear Phys. B, 728 (2014), 518–523, arXiv: 1311.2403 | DOI | Zbl

[13] Houghton C.J., Manton N.S., Sutcliffe P.M., “Rational maps, monopoles and skyrmions”, Nuclear Phys. B, 510 (1998), 507–537, arXiv: hep-th/9705151 | DOI | MR | Zbl

[14] Manton N.S., Skyrmions – a theory of nuclei, World Scientific, London, 2022 | DOI

[15] Naya C., “Skyrmions and clustering in light nuclei”, Phys. Rev. Lett., 121 (2018), 232002, 5 pp., arXiv: 1811.02064 | DOI

[16] Naya C., Sutcliffe P., “Skyrmions in models with pions and rho mesons”, J. High Energy Phys., 2018:5 (2018), 174, 14 pp., arXiv: 1803.06098 | DOI | MR

[17] Skyrme T.H.R., “A unified field theory of mesons and baryons”, Nuclear Phys., 31 (1962), 556–569 | DOI | MR

[18] Sutcliffe P., “Skyrmions, instantons and holography”, J. High Energy Phys., 2010:8 (2010), 019, 25 pp., arXiv: 1003.0023 | DOI | MR | Zbl

[19] Sutcliffe P., “Skyrmions in a truncated BPS theory”, J. High Energy Phys., 2011:4 (2011), 045, 13 pp., arXiv: 1101.2402 | DOI | MR | Zbl