Mots-clés : cumulants, Möbius category.
@article{SIGMA_2023_19_a5,
author = {Joscha Diehl and Malte Gerhold and Nicolas Gilliers},
title = {Shuffle {Algebras} and {Non-Commutative} {Probability} for {Pairs} of {Faces}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2023},
volume = {19},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a5/}
}
TY - JOUR AU - Joscha Diehl AU - Malte Gerhold AU - Nicolas Gilliers TI - Shuffle Algebras and Non-Commutative Probability for Pairs of Faces JO - Symmetry, integrability and geometry: methods and applications PY - 2023 VL - 19 UR - http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a5/ LA - en ID - SIGMA_2023_19_a5 ER -
%0 Journal Article %A Joscha Diehl %A Malte Gerhold %A Nicolas Gilliers %T Shuffle Algebras and Non-Commutative Probability for Pairs of Faces %J Symmetry, integrability and geometry: methods and applications %D 2023 %V 19 %U http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a5/ %G en %F SIGMA_2023_19_a5
Joscha Diehl; Malte Gerhold; Nicolas Gilliers. Shuffle Algebras and Non-Commutative Probability for Pairs of Faces. Symmetry, integrability and geometry: methods and applications, Tome 19 (2023). http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a5/
[1] Aguiar M., Mahajan S., Monoidal functors, species and Hopf algebras, CRM Monogr. Ser., 29, Amer. Math. Soc., Providence, RI, 2010 | DOI
[2] Arizmendi O., Hasebe T., Lehner F., Vargas C., “Relations between cumulants in noncommutative probability”, Adv. Math., 282 (2015), 56–92, arXiv: 1408.2977 | DOI
[3] Baues H.J., “The double bar and cobar constructions”, Compositio Math., 43 (1981), 331–341
[4] Ben Ghorbal A., Schürmann M., “Non-commutative notions of stochastic independence”, Math. Proc. Cambridge Philos. Soc., 133 (2002), 531–561 | DOI
[5] Bożejko M., Speicher R., “$\psi$-independent and symmetrized white noises”, Quantum Probability Related Topics, QP-PQ, 6, World Sci. Publ., River Edge, NJ, 1991, 219–236 | DOI
[6] Charlesworth I., Nelson B., Skoufranis P., “Combinatorics of bi-freeness with amalgamation”, Comm. Math. Phys., 338 (2015), 801–847, arXiv: 1408.3251 | DOI
[7] Charlesworth I., Nelson B., Skoufranis P., “On two-faced families of non-commutative random variables”, Canad. J. Math., 67 (2015), 1290–1325, arXiv: 1403.4907 | DOI
[8] Content M., Lemay F., Leroux P., “Catégories de {M}öbius et fonctorialités: un cadre général pour l'inversion de Möbius”, J. Combin. Theory Ser. A, 28 (1980), 169–190 | DOI
[9] Dür A., Möbius functions, incidence algebras and power series representations, Lecture Notes in Math., 1202, Springer, Berlin, 1986 | DOI
[10] Ebrahimi-Fard K., Foissy L., Kock J., Patras F., “Operads of (noncrossing) partitions, interacting bialgebras, and moment-cumulant relations”, Adv. Math., 369 (2020), 107170, 55 pp., arXiv: 1907.01190 | DOI
[11] Ebrahimi-Fard K., Patras F., “Cumulants, free cumulants and half-shuffles”, Proc. Royal Soc. A, 471 (2015), 20140843, 18 pp., arXiv: 1409.5664 | DOI
[12] Ebrahimi-Fard K., Patras F., “Shuffle group laws: applications in free probability”, Proc. Lond. Math. Soc., 119 (2019), 814–840, arXiv: 1704.04942 | DOI
[13] Etingof P., Gelaki S., Nikshych D., Ostrik V., Tensor categories, Math. Surveys Monogr., 205, Amer. Math. Soc., Providence, RI, 2015 | DOI
[14] Gerhold M., “Bimonotone Brownian motions”, Proceedings of QP 38, Special Issue Dedicated to Professor Accardi, Professor Volovich and a Memorial Issue to Professor Hida, QP-PQ, 32, World Sci. Publ., River Edge, NJ (to appear) , arXiv: 1708.03510
[15] Gerhold M., Schoenberg correspondence for multifaced independence, arXiv: 2104.02985
[16] Gerhold M., Hasebe T., Ulrich M., Towards a classification of multi-faced independence: a representation-theoretic approach, arXiv: 2111.07649
[17] Gerhold M., Varšo P., Towards a classification of multi-faced independences: a combinatorial approach, arXiv: 2301.01816
[18] Gilliers N., “A shuffle algebra point of view on operator-valued probability theory”, Adv. Math., 408 (2022), 108614, 44 pp., arXiv: 2005.12049 | DOI
[19] Gu Y., Hasebe T., Skoufranis P., “Bi-monotonic independence for pairs of algebras”, J. Theoret. Probab., 33 (2020), 533–566, arXiv: 1708.05334 | DOI
[20] Gu Y., Skoufranis P., “Conditionally bi-free independence for pairs of faces”, J. Funct. Anal., 273 (2017), 1663–1733, arXiv: 1609.07475 | DOI
[21] Gu Y., Skoufranis P., “Bi-Boolean independence for pairs of algebras”, Complex Anal. Oper. Theory, 13 (2019), 3023–3089, arXiv: 1703.03072 | DOI
[22] Hald A., “The early history of the cumulants and the Gram–Charlier series”, Int. Stat. Rev., 68 (2000), 137–153, arXiv: 1703.03072 | DOI
[23] Hasebe T., Lehner F., Cumulants, spreadability and the Campbell–Baker–Hausdorff series, arXiv: 1711.00219
[24] Hasebe T., Saigo H., “The monotone cumulants”, Ann. Inst. Henri Poincaré Probab. Stat., 47 (2011), 1160–1170, arXiv: 0907.4896 | DOI
[25] Lehner F., “Cumulants in noncommutative probability theory. I Noncommutative exchangeability systems”, Math. Z., 248 (2004), 67–100, arXiv: math.CO/0210442 | DOI
[26] Leinster T., “Notions of Möbius inversion”, Bull. Belg. Math. Soc. Simon Stevin, 19 (2012), 911–935, arXiv: 1201.0413 | DOI
[27] Liu W., “Free-Boolean independence for pairs of algebras”, J. Funct. Anal., 277 (2019), 994–1028, arXiv: 1710.01374 | DOI
[28] Loday J.-L., “Dialgebras”, Dialgebras and related operads, Lecture Notes in Math., 1763, Springer, Berlin, 2001, 7–66, arXiv: math.QA/0102053 | DOI
[29] Manchon D., “A short survey on pre-Lie algebras”, Noncommutative Geometry and Physics: Renormalisation, Motives, Index Theory, ESI Lect. Math. Phys., Eur. Math. Soc., Zürich, 2011, 89–102 | DOI
[30] Manzel S., Schürmann M., “Non-commutative stochastic independence and cumulants”, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 20 (2017), 1750010, 38 pp., arXiv: 1601.06779 | DOI
[31] Mastnak M., Nica A., “Double-ended queues and joint moments of left-right canonical operators on full Fock space”, Internat. J. Math., 26 (2015), 1550016, 34 pp., arXiv: 1312.0269 | DOI
[32] Muraki N., “The five independences as natural products”, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 6 (2003), 337–371 | DOI
[33] Nica A., Speicher R., Lectures on the combinatorics of free probability, London Math. Soc. Lecture Note Ser., 335, Cambridge University Press, Cambridge, 2006 | DOI
[34] nLab authors, Internalization, Revision 86, 2023 https://ncatlab.org/nlab/show/internalization
[35] Speed T.P., “Cumulants and partition lattices”, Austral. J. Statist., 25 (1983), 378–388 | DOI
[36] Speicher R., “Multiplicative functions on the lattice of noncrossing partitions and free convolution”, Math. Ann., 298 (1994), 611–628 | DOI
[37] Speicher R., Woroudi R., “Boolean convolution”, Free Probability Theory (Waterloo, ON, 1995), Fields Inst. Commun., 12, Amer. Math. Soc., Providence, RI, 1997, 267–279
[38] Szczesny M., “Incidence categories”, J. Pure Appl. Algebra, 215 (2011), 303–309, arXiv: 0910.5387 | DOI
[39] Varšo P., Studies on positive and symmetric two-faced universal products, Ph.D. Thesis, University of Greifswald, 2021 https://nbn-resolving.org/urn:nbn:de:gbv:9-opus-75524
[40] Voiculescu D., “Symmetries of some reduced free product $C^\ast$-algebras”, Operator Algebras and their Connections with Topology and Ergodic Theory (Buşteni, 1983), Lecture Notes in Math., 1132, Springer, Berlin, 1985, 556–588 | DOI
[41] Voiculescu D., “Addition of certain noncommuting random variables”, J. Funct. Anal., 66 (1986), 323–346 | DOI
[42] Voiculescu D.-V., “Free probability for pairs of faces I”, Comm. Math. Phys., 332 (2014), 955–980, arXiv: 1306.6082 | DOI