Shuffle Algebras and Non-Commutative Probability for Pairs of Faces
Symmetry, integrability and geometry: methods and applications, Tome 19 (2023) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

One can build an operatorial model for freeness by considering either the right-handed or the left-handed representation of algebras of operators acting on the free product of the underlying pointed Hilbert spaces. Considering both at the same time, that is, computing distributions of operators in the algebra generated by the left- and right-handed representations, led Voiculescu in 2013 to define and study bifreeness and, in the sequel, triggered the development of an extension of noncommutative probability now frequently referred to as multi-faced (two-faced in the example given above). Many examples of two-faced independences emerged these past years. Of great interest to us are biBoolean, bifree and type I bimonotone independences. In this paper, we extend the preLie calculus pertaining to free, Boolean, and monotone moment-cumulant relations initiated by K. Ebrahimi-Fard and F. Patras to their above-mentioned two-faced equivalents.
Keywords: shuffle algebras, non-commutative probability, multi-faced
Mots-clés : cumulants, Möbius category.
@article{SIGMA_2023_19_a5,
     author = {Joscha Diehl and Malte Gerhold and Nicolas Gilliers},
     title = {Shuffle {Algebras} and {Non-Commutative} {Probability} for {Pairs} of {Faces}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2023},
     volume = {19},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a5/}
}
TY  - JOUR
AU  - Joscha Diehl
AU  - Malte Gerhold
AU  - Nicolas Gilliers
TI  - Shuffle Algebras and Non-Commutative Probability for Pairs of Faces
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2023
VL  - 19
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a5/
LA  - en
ID  - SIGMA_2023_19_a5
ER  - 
%0 Journal Article
%A Joscha Diehl
%A Malte Gerhold
%A Nicolas Gilliers
%T Shuffle Algebras and Non-Commutative Probability for Pairs of Faces
%J Symmetry, integrability and geometry: methods and applications
%D 2023
%V 19
%U http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a5/
%G en
%F SIGMA_2023_19_a5
Joscha Diehl; Malte Gerhold; Nicolas Gilliers. Shuffle Algebras and Non-Commutative Probability for Pairs of Faces. Symmetry, integrability and geometry: methods and applications, Tome 19 (2023). http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a5/

[1] Aguiar M., Mahajan S., Monoidal functors, species and Hopf algebras, CRM Monogr. Ser., 29, Amer. Math. Soc., Providence, RI, 2010 | DOI

[2] Arizmendi O., Hasebe T., Lehner F., Vargas C., “Relations between cumulants in noncommutative probability”, Adv. Math., 282 (2015), 56–92, arXiv: 1408.2977 | DOI

[3] Baues H.J., “The double bar and cobar constructions”, Compositio Math., 43 (1981), 331–341

[4] Ben Ghorbal A., Schürmann M., “Non-commutative notions of stochastic independence”, Math. Proc. Cambridge Philos. Soc., 133 (2002), 531–561 | DOI

[5] Bożejko M., Speicher R., “$\psi$-independent and symmetrized white noises”, Quantum Probability Related Topics, QP-PQ, 6, World Sci. Publ., River Edge, NJ, 1991, 219–236 | DOI

[6] Charlesworth I., Nelson B., Skoufranis P., “Combinatorics of bi-freeness with amalgamation”, Comm. Math. Phys., 338 (2015), 801–847, arXiv: 1408.3251 | DOI

[7] Charlesworth I., Nelson B., Skoufranis P., “On two-faced families of non-commutative random variables”, Canad. J. Math., 67 (2015), 1290–1325, arXiv: 1403.4907 | DOI

[8] Content M., Lemay F., Leroux P., “Catégories de {M}öbius et fonctorialités: un cadre général pour l'inversion de Möbius”, J. Combin. Theory Ser. A, 28 (1980), 169–190 | DOI

[9] Dür A., Möbius functions, incidence algebras and power series representations, Lecture Notes in Math., 1202, Springer, Berlin, 1986 | DOI

[10] Ebrahimi-Fard K., Foissy L., Kock J., Patras F., “Operads of (noncrossing) partitions, interacting bialgebras, and moment-cumulant relations”, Adv. Math., 369 (2020), 107170, 55 pp., arXiv: 1907.01190 | DOI

[11] Ebrahimi-Fard K., Patras F., “Cumulants, free cumulants and half-shuffles”, Proc. Royal Soc. A, 471 (2015), 20140843, 18 pp., arXiv: 1409.5664 | DOI

[12] Ebrahimi-Fard K., Patras F., “Shuffle group laws: applications in free probability”, Proc. Lond. Math. Soc., 119 (2019), 814–840, arXiv: 1704.04942 | DOI

[13] Etingof P., Gelaki S., Nikshych D., Ostrik V., Tensor categories, Math. Surveys Monogr., 205, Amer. Math. Soc., Providence, RI, 2015 | DOI

[14] Gerhold M., “Bimonotone Brownian motions”, Proceedings of QP 38, Special Issue Dedicated to Professor Accardi, Professor Volovich and a Memorial Issue to Professor Hida, QP-PQ, 32, World Sci. Publ., River Edge, NJ (to appear) , arXiv: 1708.03510

[15] Gerhold M., Schoenberg correspondence for multifaced independence, arXiv: 2104.02985

[16] Gerhold M., Hasebe T., Ulrich M., Towards a classification of multi-faced independence: a representation-theoretic approach, arXiv: 2111.07649

[17] Gerhold M., Varšo P., Towards a classification of multi-faced independences: a combinatorial approach, arXiv: 2301.01816

[18] Gilliers N., “A shuffle algebra point of view on operator-valued probability theory”, Adv. Math., 408 (2022), 108614, 44 pp., arXiv: 2005.12049 | DOI

[19] Gu Y., Hasebe T., Skoufranis P., “Bi-monotonic independence for pairs of algebras”, J. Theoret. Probab., 33 (2020), 533–566, arXiv: 1708.05334 | DOI

[20] Gu Y., Skoufranis P., “Conditionally bi-free independence for pairs of faces”, J. Funct. Anal., 273 (2017), 1663–1733, arXiv: 1609.07475 | DOI

[21] Gu Y., Skoufranis P., “Bi-Boolean independence for pairs of algebras”, Complex Anal. Oper. Theory, 13 (2019), 3023–3089, arXiv: 1703.03072 | DOI

[22] Hald A., “The early history of the cumulants and the Gram–Charlier series”, Int. Stat. Rev., 68 (2000), 137–153, arXiv: 1703.03072 | DOI

[23] Hasebe T., Lehner F., Cumulants, spreadability and the Campbell–Baker–Hausdorff series, arXiv: 1711.00219

[24] Hasebe T., Saigo H., “The monotone cumulants”, Ann. Inst. Henri Poincaré Probab. Stat., 47 (2011), 1160–1170, arXiv: 0907.4896 | DOI

[25] Lehner F., “Cumulants in noncommutative probability theory. I Noncommutative exchangeability systems”, Math. Z., 248 (2004), 67–100, arXiv: math.CO/0210442 | DOI

[26] Leinster T., “Notions of Möbius inversion”, Bull. Belg. Math. Soc. Simon Stevin, 19 (2012), 911–935, arXiv: 1201.0413 | DOI

[27] Liu W., “Free-Boolean independence for pairs of algebras”, J. Funct. Anal., 277 (2019), 994–1028, arXiv: 1710.01374 | DOI

[28] Loday J.-L., “Dialgebras”, Dialgebras and related operads, Lecture Notes in Math., 1763, Springer, Berlin, 2001, 7–66, arXiv: math.QA/0102053 | DOI

[29] Manchon D., “A short survey on pre-Lie algebras”, Noncommutative Geometry and Physics: Renormalisation, Motives, Index Theory, ESI Lect. Math. Phys., Eur. Math. Soc., Zürich, 2011, 89–102 | DOI

[30] Manzel S., Schürmann M., “Non-commutative stochastic independence and cumulants”, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 20 (2017), 1750010, 38 pp., arXiv: 1601.06779 | DOI

[31] Mastnak M., Nica A., “Double-ended queues and joint moments of left-right canonical operators on full Fock space”, Internat. J. Math., 26 (2015), 1550016, 34 pp., arXiv: 1312.0269 | DOI

[32] Muraki N., “The five independences as natural products”, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 6 (2003), 337–371 | DOI

[33] Nica A., Speicher R., Lectures on the combinatorics of free probability, London Math. Soc. Lecture Note Ser., 335, Cambridge University Press, Cambridge, 2006 | DOI

[34] nLab authors, Internalization, Revision 86, 2023 https://ncatlab.org/nlab/show/internalization

[35] Speed T.P., “Cumulants and partition lattices”, Austral. J. Statist., 25 (1983), 378–388 | DOI

[36] Speicher R., “Multiplicative functions on the lattice of noncrossing partitions and free convolution”, Math. Ann., 298 (1994), 611–628 | DOI

[37] Speicher R., Woroudi R., “Boolean convolution”, Free Probability Theory (Waterloo, ON, 1995), Fields Inst. Commun., 12, Amer. Math. Soc., Providence, RI, 1997, 267–279

[38] Szczesny M., “Incidence categories”, J. Pure Appl. Algebra, 215 (2011), 303–309, arXiv: 0910.5387 | DOI

[39] Varšo P., Studies on positive and symmetric two-faced universal products, Ph.D. Thesis, University of Greifswald, 2021 https://nbn-resolving.org/urn:nbn:de:gbv:9-opus-75524

[40] Voiculescu D., “Symmetries of some reduced free product $C^\ast$-algebras”, Operator Algebras and their Connections with Topology and Ergodic Theory (Buşteni, 1983), Lecture Notes in Math., 1132, Springer, Berlin, 1985, 556–588 | DOI

[41] Voiculescu D., “Addition of certain noncommuting random variables”, J. Funct. Anal., 66 (1986), 323–346 | DOI

[42] Voiculescu D.-V., “Free probability for pairs of faces I”, Comm. Math. Phys., 332 (2014), 955–980, arXiv: 1306.6082 | DOI