Computation of Weighted Bergman Inner Products on Bounded Symmetric Domains and Parseval–Plancherel-Type Formulas under Subgroups
Symmetry, integrability and geometry: methods and applications, Tome 19 (2023) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $(G,G_1)=(G,(G^\sigma)_0)$ be a symmetric pair of holomorphic type, and we consider a pair of Hermitian symmetric spaces $D_1=G_1/K_1\subset D=G/K$, realized as bounded symmetric domains in complex vector spaces $\mathfrak{p}^+_1:=(\mathfrak{p}^+)^\sigma\subset\mathfrak{p}^+$ respectively. Then the universal covering group $\widetilde{G}$ of $G$ acts unitarily on the weighted Bergman space $\mathcal{H}_\lambda(D)\subset\mathcal{O}(D)=\mathcal{O}_\lambda(D)$ on $D$ for sufficiently large $\lambda$. Its restriction to the subgroup $\widetilde{G}_1$ decomposes discretely and multiplicity-freely, and its branching law is given explicitly by Hua–Kostant–Schmid–Kobayashi's formula in terms of the $\widetilde{K}_1$-decomposition of the space $\mathcal{P}\bigl(\mathfrak{p}^+_2\bigr)$ of polynomials on $\mathfrak{p}^+_2:=(\mathfrak{p}^+)^{-\sigma}\subset\mathfrak{p}^+$. The object of this article is to understand the decomposition of the restriction $\mathcal{H}_\lambda(D)|_{\widetilde{G}_1}$ by studying the weighted Bergman inner product on each $\widetilde{K}_1$-type in $\mathcal{P}\bigl(\mathfrak{p}^+_2\bigr)\subset\mathcal{H}_\lambda(D)$. For example, by computing explicitly the norm $\Vert f\Vert_\lambda$ for $f=f(x_2)\in\mathcal{P}\bigl(\mathfrak{p}^+_2\bigr)$, we can determine the Parseval–Plancherel-type formula for the decomposition of $\mathcal{H}_\lambda(D)|_{\widetilde{G}_1}$. Also, by computing the poles of $\bigl\langle f(x_2),{\rm e}^{(x|\overline{z})_{\mathfrak{p}^+}}\bigr\rangle_{\lambda,x}$ for $f(x_2)\in\mathcal{P}\bigl(\mathfrak{p}^+_2\bigr)$, $x=(x_1,x_2)$, $z\in\mathfrak{p}^+=\mathfrak{p}^+_1\oplus\mathfrak{p}^+_2$, we can get some information on branching of $\mathcal{O}_\lambda(D)|_{\widetilde{G}_1}$ also for $\lambda$ in non-unitary range. In this article we consider these problems for all $\widetilde{K}_1$-types in $\mathcal{P}\bigl(\mathfrak{p}^+_2\bigr)$.
Keywords: weighted Bergman spaces, holomorphic discrete series representations, branching laws, highest weight modules.
Mots-clés : Parseval–Plancherel-type formulas
@article{SIGMA_2023_19_a48,
     author = {Ryosuke Nakahama},
     title = {Computation of {Weighted} {Bergman} {Inner} {Products} on {Bounded} {Symmetric} {Domains} and {Parseval{\textendash}Plancherel-Type} {Formulas} under {Subgroups}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2023},
     volume = {19},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a48/}
}
TY  - JOUR
AU  - Ryosuke Nakahama
TI  - Computation of Weighted Bergman Inner Products on Bounded Symmetric Domains and Parseval–Plancherel-Type Formulas under Subgroups
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2023
VL  - 19
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a48/
LA  - en
ID  - SIGMA_2023_19_a48
ER  - 
%0 Journal Article
%A Ryosuke Nakahama
%T Computation of Weighted Bergman Inner Products on Bounded Symmetric Domains and Parseval–Plancherel-Type Formulas under Subgroups
%J Symmetry, integrability and geometry: methods and applications
%D 2023
%V 19
%U http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a48/
%G en
%F SIGMA_2023_19_a48
Ryosuke Nakahama. Computation of Weighted Bergman Inner Products on Bounded Symmetric Domains and Parseval–Plancherel-Type Formulas under Subgroups. Symmetry, integrability and geometry: methods and applications, Tome 19 (2023). http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a48/

[1] Adams J., “The theta correspondence over $\mathbb{R}$”, Harmonic Analysis, Group Representations, Automorphic Forms and Invariant Theory, Lect. Notes Ser. Inst. Math. Sci. Natl. Univ. Singap., 12, World Sci. Publ., Hackensack, NJ, 2007, 1–39 | DOI | MR | Zbl

[2] Arazy J., “A survey of invariant Hilbert spaces of analytic functions on bounded symmetric domains”, Multivariable Operator Theory (Seattle, WA, 1993), Contemp. Math., 185, Amer. Math. Soc., Providence, RI, 1995, 7–65 | DOI | MR | Zbl

[3] Ben Saïd S., “Espaces de Bergman pondérés et série discrète holomorphe de $\widetilde{{\rm U}(p,q)}$”, J. Funct. Anal., 173 (2000), 154–181 | DOI | MR | Zbl

[4] Ben Saïd S., “Connection between the Plancherel formula and the Howe dual pair $({\rm Sp}(2n,\mathbb R),{\rm O}(k))$”, Math. Z., 241 (2002), 743–760 | DOI | MR | Zbl

[5] Ben Saïd S., “Weighted Bergman spaces on bounded symmetric domains”, Pacific J. Math., 206 (2002), 39–68 | DOI | MR | Zbl

[6] Ben Saïd S., Clerc J.-L., Koufany K., “Conformally covariant bi-differential operators on a simple real Jordan algebra”, Int. Math. Res. Not., 2020 (2020), 2287–2351, arXiv: 1809.06290 | DOI | MR | Zbl

[7] Clerc J.-L., “Symmetry breaking differential operators, the source operator and Rodrigues formulae”, Pacific J. Math., 307 (2020), 79–107, arXiv: 1902.06073 | DOI | MR | Zbl

[8] Cohen H., “Sums involving the values at negative integers of $L$-functions of quadratic characters”, Math. Ann., 217 (1975), 271–285 | DOI | MR | Zbl

[9] Dib H., “Fonctions de Bessel sur une algèbre de Jordan”, J. Math. Pures Appl., 69 (1990), 403–448 | MR | Zbl

[10] Enright T., Howe R., Wallach N., “A classification of unitary highest weight modules”, Representation Theory of Reductive Groups (Park City, Utah, 1982), Progr. Math., 40, Birkhäuser, Boston, MA, 1983, 97–143 | DOI | MR

[11] Faraut J., Kaneyuki S., Korányi A., Lu Q.-K., Roos G., Analysis and geometry on complex homogeneous domains, Progr. Math., 185, Birkhäuser, Boston, MA, 2000 | DOI | MR | Zbl

[12] Faraut J., Korányi A., “Function spaces and reproducing kernels on bounded symmetric domains”, J. Funct. Anal., 88 (1990), 64–89 | DOI | MR | Zbl

[13] Faraut J., Korányi A., Analysis on symmetric cones, Oxford Math. Monogr., The Clarendon Press, Oxford University Press, New York, 1994 | MR

[14] Frajria P.M., “Derived functors of unitary highest weight modules at reduction points”, Trans. Amer. Math. Soc., 327 (1991), 703–738 | DOI | MR | Zbl

[15] Goodman R., Wallach N.R., Symmetry, representations, and invariants, Grad. Texts in Math., 255, Springer, Dordrecht, 2009 | DOI | MR | Zbl

[16] Hilgert J., Krötz B., “Weighted Bergman spaces associated with causal symmetric spaces”, Manuscripta Math., 99 (1999), 151–180 | DOI | MR | Zbl

[17] Hilgert J., Krötz B., “The Plancherel theorem for invariant Hilbert spaces”, Math. Z., 237 (2001), 61–83 | DOI | MR | Zbl

[18] Howe R., Tan E.-C., Willenbring J.F., “Stable branching rules for classical symmetric pairs”, Trans. Amer. Math. Soc., 357 (2005), 1601–1626, arXiv: math.RT/0311159 | DOI | MR | Zbl

[19] Ibukiyama T., Kuzumaki T., Ochiai H., “Holonomic systems of Gegenbauer type polynomials of matrix arguments related with Siegel modular forms”, J. Math. Soc. Japan, 64 (2012), 273–316 | DOI | MR | Zbl

[20] Jakobsen H.P., “Intertwining differential operators for ${\rm Mp}(n,R)$ and ${\rm SU}(n,n)$”, Trans. Amer. Math. Soc., 246 (1978), 311–337 | DOI | MR | Zbl

[21] Jakobsen H.P., “Hermitian symmetric spaces and their unitary highest weight modules”, J. Funct. Anal., 52 (1983), 385–412 | DOI | MR

[22] Jakobsen H.P., Vergne M., “Restrictions and expansions of holomorphic representations”, J. Funct. Anal., 34 (1979), 29–53 | DOI | MR | Zbl

[23] Juhl A., Families of conformally covariant differential operators, $Q$-curvature and holography, Progr. Math., 275, Birkhäuser, Basel, 2009 | DOI | MR | Zbl

[24] Kashiwara M., Vergne M., “On the Segal–Shale–Weil representations and harmonic polynomials”, Invent. Math., 44 (1978), 1–47 | DOI | MR | Zbl

[25] Kobayashi T., “Multiplicity-free representations and visible actions on complex manifolds”, Publ. Res. Inst. Math. Sci., 41 (2005), 497–549 | DOI | MR | Zbl

[26] Kobayashi T., “Multiplicity-free theorems of the restrictions of unitary highest weight modules with respect to reductive symmetric pairs”, Representation Theory and Automorphic Forms, Progr. Math., 255, Birkhäuser, Boston, MA, 2008, 45–109, arXiv: math.RT/0607002 | DOI | MR | Zbl

[27] Kobayashi T., “$F$-method for constructing equivariant differential operators”, Geometric Analysis and Integral Geometry, Contemp. Math., 598, Amer. Math. Soc., Providence, RI, 2013, 139–146, arXiv: 1212.6862 | DOI | MR | Zbl

[28] Kobayashi T., “A program for branching problems in the representation theory of real reductive groups”, Representations of Reductive Groups, Progr. Math., 312, Birkhäuser, Cham, 2015, 277–322, arXiv: 1509.08861 | DOI | MR | Zbl

[29] Kobayashi T., Kubo T., Pevzner M., Conformal symmetry breaking operators for differential forms on spheres, Lecture Notes in Math., 2170, Springer, Singapore, 2016 | DOI | MR | Zbl

[30] Kobayashi T., Ørsted B., “Analysis on the minimal representation of ${\rm O}(p,q)$. II Branching laws”, Adv. Math., 180 (2003), 513–550, arXiv: math.RT/0111085 | DOI | MR | Zbl

[31] Kobayashi T., Ørsted B., Somberg P., Souček V., “Branching laws for Verma modules and applications in parabolic geometry. I”, Adv. Math., 285 (2015), 1796–1852, arXiv: 1305.6040 | DOI | MR | Zbl

[32] Kobayashi T., Pevzner M., “Differential symmetry breaking operators: I General theory and F-method”, Selecta Math. (N.S.), 22 (2016), 801–845, arXiv: 1301.2111 | DOI | MR | Zbl

[33] Kobayashi T., Pevzner M., “Differential symmetry breaking operators: II Rankin–Cohen operators for symmetric pairs”, Selecta Math. (N.S.), 22 (2016), 847–911, arXiv: 1301.2111 | DOI | MR | Zbl

[34] Kobayashi T., Pevzner M., “Inversion of Rankin–Cohen operators via holographic transform”, Ann. Inst. Fourier (Grenoble), 70 (2020), 2131–2190, arXiv: 1812.09733 | DOI | MR | Zbl

[35] Kobayashi T., Speh B., Symmetry breaking for representations of rank one orthogonal groups, Mem. Amer. Math. Soc., 238, 2015, v+110 pp., arXiv: 1310.3213 | DOI | MR

[36] Kobayashi T., Speh B., “Symmetry breaking for representations of rank one orthogonal groups II”, Lecture Notes in Math., 2234, Springer, Singapore, 2018, arXiv: 1801.00158 | DOI | MR | Zbl

[37] Kudla S.S., “Seesaw dual reductive pairs”, Automorphic Forms of Several Variables (Katata, 1983), Progr. Math., 46, Birkhäuser, Boston, MA, 1984, 244–268 | MR

[38] Loos O., Bounded symmetric domains and Jordan pairs, Math. Lectures, Department of Mathematics, University of California, Irvine, 1977 | MR

[39] Martens S., “The characters of the holomorphic discrete series”, Proc. Nat. Acad. Sci. USA, 72 (1975), 3275–3276 | DOI | MR | Zbl

[40] Merigon S., Seppänen H., “Branching laws for discrete Wallach points”, J. Funct. Anal., 258 (2010), 3241–3265, arXiv: 0906.5580 | DOI | MR | Zbl

[41] Möllers J., Oshima Y., “Discrete branching laws for minimal holomorphic representations”, J. Lie Theory, 25 (2015), 949–983, arXiv: 1402.3351 | MR | Zbl

[42] Möllers J., Oshima Y., “Restriction of most degenerate representations of $O(1,N)$ with respect to symmetric pairs”, J. Math. Sci. Univ. Tokyo, 22 (2015), 279–338 | MR | Zbl

[43] Nakahama R., “Construction of intertwining operators between holomorphic discrete series representations”, SIGMA, 15 (2019), 036, 101 pp., arXiv: 1804.07100 | DOI | MR | Zbl

[44] Nakahama R., “Computation of weighted Bergman inner products on bounded symmetric domains and restriction to subgroups”, SIGMA, 18 (2022), 033, 105 pp., arXiv: 2105.13976 | DOI | MR

[45] Neretin Yu.A., “Matrix analogues of the $B$-function, and the Plancherel formula for Berezin kernel representations”, Sb. Math., 191 (2000), 67–100 | DOI | MR | Zbl

[46] Neretin Yu.A., “On the separation of spectra in the analysis of Berezin kernels”, Funct. Anal. Appl., 34 (2000), 197–207, arXiv: math.RT/9906075 | DOI | MR | Zbl

[47] Neretin Yu.A., “Plancherel formula for Berezin deformation of $L^2$ on Riemannian symmetric space”, J. Funct. Anal., 189 (2002), 336–408, arXiv: math.RT/9911020 | DOI | MR | Zbl

[48] Ørsted B., Zhang G., “Tensor products of analytic continuations of holomorphic discrete series”, Canad. J. Math., 49 (1997), 1224–1241 | DOI | MR

[49] Ovsienko V., Redou P., “Generalized transvectants-Rankin–Cohen brackets”, Lett. Math. Phys., 63 (2003), 19–28 | DOI | MR | Zbl

[50] Peetre J., “Hankel forms of arbitrary weight over a symmetric domain via the transvectant”, Rocky Mountain J. Math., 24 (1994), 1065–1085 | DOI | MR | Zbl

[51] Peng L., Zhang G., “Tensor products of holomorphic representations and bilinear differential operators”, J. Funct. Anal., 210 (2004), 171–192 | DOI | MR | Zbl

[52] Przebinda T., “The duality correspondence of infinitesimal characters”, Colloq. Math., 70 (1996), 93–102 | DOI | MR | Zbl

[53] Rankin R.A., “The construction of automorphic forms from the derivatives of a given form”, J. Indian Math. Soc. (N.S.), 20 (1956), 103–116 | DOI | MR | Zbl

[54] Satake I., Algebraic structures of symmetric domains, Princet. Leg. Libr., Princeton University Press, 1981 | DOI | MR

[55] Sekiguchi H., “Branching rules of singular unitary representations with respect to symmetric pairs $(A_{2n-1},D_n)$”, Internat. J. Math., 24 (2013), 1350011, 25 pp. | DOI | MR | Zbl

[56] Seppänen H., “Branching laws for minimal holomorphic representations”, J. Funct. Anal., 251 (2007), 174–209, arXiv: math.RT/0703795 | DOI | MR | Zbl

[57] Seppänen H., “Branching of some holomorphic representations of ${\rm SO}(2,n)$”, J. Lie Theory, 17 (2007), 191–227, arXiv: 0907.0128 | MR | Zbl

[58] Seppänen H., “Tube domains and restrictions of minimal representations”, Internat. J. Math., 19 (2008), 1247–1268, arXiv: math.RT/0703796 | DOI | MR | Zbl

[59] Shimura G., “Arithmetic of differential operators on symmetric domains”, Duke Math. J., 48 (1981), 813–843 | DOI | MR | Zbl

[60] van Dijk G., Pevzner M., “Berezin kernels of tube domains”, J. Funct. Anal., 181 (2001), 189–208 | DOI | MR | Zbl

[61] van Dijk G., Pevzner M., “Matrix-valued Berezin kernels”, Geometry and Analysis on Finite- and Infinite-dimensional Lie groups (Bȩdlewo, 2000), Banach Center Publ., 55, Polish Acad. Sci. Inst. Math., Warsaw, 2002, 269–288 | DOI | MR | Zbl

[62] Zhang G., “Berezin transform on line bundles over bounded symmetric domains”, J. Lie Theory, 10 (2000), 111–126 | MR | Zbl

[63] Zhang G., “Berezin transform on real bounded symmetric domains”, Trans. Amer. Math. Soc., 353 (2001), 3769–3787 | DOI | MR | Zbl