Koenigs Theorem and Superintegrable Liouville Metrics
Symmetry, integrability and geometry: methods and applications, Tome 19 (2023) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In a first part, we give a new proof of Koenigs theorem and, in a second part, we determine the local form of all the superintegrable Riemannian Liouville metrics as well as their global geometries.
Keywords: Koenigs metrics, superintegrable geodesic flow, two-dimensional manifolds.
Mots-clés : Liouville metrics
@article{SIGMA_2023_19_a47,
     author = {Galliano Valent},
     title = {Koenigs {Theorem} and {Superintegrable} {Liouville} {Metrics}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2023},
     volume = {19},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a47/}
}
TY  - JOUR
AU  - Galliano Valent
TI  - Koenigs Theorem and Superintegrable Liouville Metrics
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2023
VL  - 19
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a47/
LA  - en
ID  - SIGMA_2023_19_a47
ER  - 
%0 Journal Article
%A Galliano Valent
%T Koenigs Theorem and Superintegrable Liouville Metrics
%J Symmetry, integrability and geometry: methods and applications
%D 2023
%V 19
%U http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a47/
%G en
%F SIGMA_2023_19_a47
Galliano Valent. Koenigs Theorem and Superintegrable Liouville Metrics. Symmetry, integrability and geometry: methods and applications, Tome 19 (2023). http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a47/

[1] Ballesteros A., Enciso A., Herranz F.J., Ragnisco O., Riglioni D., “Quantum mechanics on spaces of nonconstant curvature: the oscillator problem and superintegrability”, Ann. Physics, 326 (2011), 2053–2073, arXiv: 1102.5494 | DOI | MR | Zbl

[2] Bolsinov A.V., Matveev V.S., Pucacco G., “Normal forms for pseudo-Riemannian 2-dimensional metrics whose geodesic flows admit integrals quadratic in momenta”, J. Geom. Phys., 59 (2009), 1048–1062, arXiv: 0803.0289 | DOI | MR | Zbl

[3] Boyer C.P., Kalnins E.G., Miller Jr. W., “Stäckel-equivalent integrable Hamiltonian systems”, SIAM J. Math. Anal., 17 (1986), 778–797 | DOI | MR | Zbl

[4] Bryant R.L., Manno G., Matveev V.S., “A solution of a problem of Sophus Lie: normal forms of two-dimensional metrics admitting two projective vector fields”, Math. Ann., 340 (2008), 437–463, arXiv: 0705.3592 | DOI | MR | Zbl

[5] Daskaloyannis C., Ypsilantis K., “Unified treatment and classification of superintegrable systems with integrals quadratic in momenta on a two-dimensional manifold”, J. Math. Phys., 47 (2006), 042904, 38 pp., arXiv: math-ph/0412055 | DOI | MR | Zbl

[6] Fordy A.P., “First integrals from conformal symmetries: Darboux–Koenigs metrics and beyond”, J. Geom. Phys., 145 (2019), 103475, 13 pp., arXiv: 1804.06904 | DOI | MR | Zbl

[7] Fordy A.P., Huang Q., “Generalised Darboux–Koenigs metrics and 3-dimensional superintegrable systems”, SIGMA, 15 (2019), 037, 30 pp., arXiv: 1810.13368 | DOI | MR | Zbl

[8] Hietarinta J., Grammaticos B., Dorizzi B., Ramani A., “Coupling-constant metamorphosis and duality between integrable Hamiltonian systems”, Phys. Rev. Lett., 53 (1984), 1707–1710 | DOI | MR

[9] Kalnins E.G., Kress J.M., Miller Jr. W., Winternitz P., “Superintegrable systems in Darboux spaces”, J. Math. Phys., 44 (2003), 5811–5848, arXiv: math-ph/0307039 | DOI | MR | Zbl

[10] Kalnins E.G., Kress J.M., Pogosyan G.S., Miller Jr. W., “Completeness of superintegrability in two-dimensional constant-curvature spaces”, J. Phys. A, 34 (2001), 4705–4720, arXiv: math-ph/0102006 | DOI | MR | Zbl

[11] Kalnins E.G., Kress J.M., Winternitz P., “Superintegrability in a two-dimensional space of nonconstant curvature”, J. Math. Phys., 43 (2002), 970–983, arXiv: math-ph/0108015 | DOI | MR | Zbl

[12] Kiyohara K., “Compact Liouville surfaces”, J. Math. Soc. Japan, 43 (1991), 555–591 | DOI | MR | Zbl

[13] Koenigs G., “Sur les géodésiques à intégrales quadratiques”, Leçons sur la théorie générale des surfaces, v. 4,, ed. J.G. Darboux, Chelsea Publishing, New York, 1972, 368–404 | MR

[14] Matveev V.S., “Lichnerowicz–Obata conjecture in dimension two”, Comment. Math. Helv., 80 (2005), 541–570 | DOI | MR | Zbl

[15] Matveev V.S., Shevchishin V.V., “Two-dimensional superintegrable metrics with one linear and one cubic integral”, J. Geom. Phys., 61 (2011), 1353–1377, arXiv: 1010.4699 | DOI | MR | Zbl

[16] Miller Jr. W., Post S., Winternitz P., “Classical and quantum superintegrability with applications”, J. Phys. A, 46 (2013), 423001, 97 pp., arXiv: 1309.2694 | DOI | MR | Zbl

[17] Valent G., “Global structure and geodesics for Koenigs superintegrable systems”, Regul. Chaotic Dyn., 21 (2016), 477–509, arXiv: 1510.08379 | DOI | MR | Zbl

[18] Valent G., Duval C., Shevchishin V., “Explicit metrics for a class of two-dimensional cubically superintegrable systems”, J. Geom. Phys., 87 (2015), 461–481, arXiv: 1403.0422 | DOI | MR | Zbl