Mots-clés : non-diagonal K-matrices, Verma modules
@article{SIGMA_2023_19_a45,
author = {Dmitry Chernyak and Azat M. Gainutdinov and Jesper Lykke Jacobsen and Hubert Saleur},
title = {Algebraic {Bethe} {Ansatz} for the {Open} {XXZ} {Spin} {Chain} with {Non-Diagonal} {Boundary} {Terms} via $U_{\mathfrak{q}}\mathfrak{sl}_2$ {Symmetry}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2023},
volume = {19},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a45/}
}
TY - JOUR
AU - Dmitry Chernyak
AU - Azat M. Gainutdinov
AU - Jesper Lykke Jacobsen
AU - Hubert Saleur
TI - Algebraic Bethe Ansatz for the Open XXZ Spin Chain with Non-Diagonal Boundary Terms via $U_{\mathfrak{q}}\mathfrak{sl}_2$ Symmetry
JO - Symmetry, integrability and geometry: methods and applications
PY - 2023
VL - 19
UR - http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a45/
LA - en
ID - SIGMA_2023_19_a45
ER -
%0 Journal Article
%A Dmitry Chernyak
%A Azat M. Gainutdinov
%A Jesper Lykke Jacobsen
%A Hubert Saleur
%T Algebraic Bethe Ansatz for the Open XXZ Spin Chain with Non-Diagonal Boundary Terms via $U_{\mathfrak{q}}\mathfrak{sl}_2$ Symmetry
%J Symmetry, integrability and geometry: methods and applications
%D 2023
%V 19
%U http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a45/
%G en
%F SIGMA_2023_19_a45
Dmitry Chernyak; Azat M. Gainutdinov; Jesper Lykke Jacobsen; Hubert Saleur. Algebraic Bethe Ansatz for the Open XXZ Spin Chain with Non-Diagonal Boundary Terms via $U_{\mathfrak{q}}\mathfrak{sl}_2$ Symmetry. Symmetry, integrability and geometry: methods and applications, Tome 19 (2023). http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a45/
[1] Ang M., Sun X., Integrability of the conformal loop ensemble, arXiv: 2107.01788
[2] Avan J., Belliard S., Grosjean N., Pimenta R.A., “Modified algebraic Bethe ansatz for XXZ chain on the segment – III – Proof”, Nuclear Phys. B, 899 (2015), 229–246, arXiv: 1506.02147 | DOI | MR | Zbl
[3] Bajnok Z., “Equivalences between spin models induced by defects”, J. Stat. Mech. Theory Exp., 2006 (2006), P06010, 13 pp., arXiv: hep-th/0601107 | DOI | Zbl
[4] Bajnok Z., Granet E., Jacobsen J.L., Nepomechie R.I., “On generalized $Q$-systems”, High Energy Phys. J., 2020:3 (2020), 177, 27 pp., arXiv: 1910.07805 | DOI | MR | Zbl
[5] Baseilhac P., Koizumi K., “Exact spectrum of the $XXZ$ open spin chain from the $q$–Onsager algebra representation theory”, J. Stat. Mech. Theory Exp., 2007 (2007), P09006, 27 pp., arXiv: hep-th/0703106 | DOI | MR | Zbl
[6] Belliard S., “Modified algebraic Bethe ansatz for XXZ chain on the segment – I: Triangular cases”, Nuclear Phys. B, 892 (2015), 1–20, arXiv: 1408.4840 | DOI | MR | Zbl
[7] Belliard S., Crampé N., “Heisenberg XXX model with general boundaries: eigenvectors from algebraic Bethe ansatz”, SIGMA, 9 (2013), 072, 12 pp., arXiv: 1309.6165 | DOI | MR | Zbl
[8] Belliard S., Pimenta R.A., “Modified algebraic Bethe ansatz for XXZ chain on the segment – II – general cases”, Nuclear Phys. B, 894 (2015), 527–552, arXiv: 1412.7511 | DOI | MR | Zbl
[9] Boos H., Göhmann F., Klümper A., Nirov K.S., Razumov A.V., “Exercises with the universal $R$-matrix”, J. Phys. A, 43 (2010), 415208, 35 pp. | DOI | MR | Zbl
[10] Cao J., Lin H., Shi K., Wang Y., “Exact solution of $XXZ$ spin chain with unparallel boundary fields”, Nuclear Phys. B, 663 (2003), 487–519, arXiv: cond-mat/0212163 | DOI | MR | Zbl
[11] Chari V., Pressley A., “Quantum affine algebras”, Comm. Math. Phys., 142 (1991), 261–283 | DOI | MR | Zbl
[12] Chari V., Pressley A., A guide to quantum groups, Cambridge University Press, Cambridge, 1994 | MR | Zbl
[13] Chernyak D., Leurent S., Volin D., “Completeness of Wronskian Bethe equations for rational $\mathfrak{gl}_{m|n}$ spin chains”, Comm. Math. Phys., 391 (2022), 969–1045, arXiv: 2004.02865 | DOI | MR | Zbl
[14] Chernyak D., Gainutdinov A.M., Saleur H., “$U_{\mathfrak q}\mathfrak{sl}_2$-invariant non-compact boundary conditions for the XXZ spin chain”, J. High Energy Phys., 2022:11 (2022), 016, 64 pp., arXiv: 2207.12772 | DOI | MR
[15] Crampé N., Poulain d'Andecy L., “Baxterisation of the fused Hecke algebra and $R$-matrices with $\mathfrak{gl}(N)$-symmetry”, Lett. Math. Phys., 111 (2021), 92, 21 pp., arXiv: 2004.05035 | DOI | MR
[16] Crampé N., Ragoucy E., Simon D., “Eigenvectors of open XXZ and ASEP models for a class of non-diagonal boundary conditions”, J. Stat. Mech. Theory Exp., 2010 (2010), P11038, 20 pp., arXiv: 1009.4119 | DOI
[17] Daugherty Z., Ram A., Calibrated representations of two boundary Temperley–Lieb algebras, arXiv: 2009.02812
[18] Daugherty Z., Ram A., Two boundary Hecke algebras and combinatorics of type C, arXiv: 1804.10296
[19] de Gier J., Nichols A., “The two-boundary Temperley–Lieb algebra”, J. Algebra, 321 (2009), 1132–1167, arXiv: math.RT/0703338 | DOI | MR | Zbl
[20] de Gier J., Pyatov P., “Bethe ansatz for the Temperley–Lieb loop model with open boundaries”, J. Stat. Mech. Theory Exp., 2004 (2004), 002, 27 pp., arXiv: hep-th/0312235 | DOI | MR
[21] de Vega H.J., González-Ruiz A., “Boundary $K$-matrices for the six vertex and the $n(2n-1) A_{n-1}$ vertex models”, J. Phys. A, 26 (1993), L519–L524, arXiv: hep-th/9211114 | DOI | MR | Zbl
[22] de Vega H.J., González-Ruiz A., “Boundary $K$-matrices for the $XYZ$, $XXZ$ and $XXX$ spin chains”, J. Phys. A, 27 (1994), 6129–6137, arXiv: hep-th/9306089 | DOI | MR | Zbl
[23] Delius G.W., Nepomechie R.I., “Solutions of the boundary Yang–Baxter equation for arbitrary spin”, J. Phys. A, 35 (2002), L341–L348, arXiv: hep-th/0204076 | DOI | MR | Zbl
[24] Doikou A., Martin P.P., “Hecke algebraic approach to the reflection equation for spin chains”, J. Phys. A, 36 (2003), 2203–2226, arXiv: hep-th/0206076 | DOI | MR
[25] Drinfel'd V.G., “Hopf algebras and the quantum Yang–Baxter equation”, Sov. Math., Dokl., 32 (1985), 256–258 | MR | Zbl
[26] Drinfel'd V.G., “Quantum groups”, J. Sov. Math., 41 (1988), 898–915 | DOI | MR | Zbl
[27] Dubail J., Conditions aux bords dans des théories conformes non unitaires, Ph.D. Thesis, Université Paris Sud - Paris XI, 2010
[28] Dubail J., Jacobsen J.L., Saleur H., “Conformal two-boundary loop model on the annulus”, Nuclear Phys. B, 813 (2009), 430–459, arXiv: 0812.2746 | DOI | MR | Zbl
[29] Dubail J., Jacobsen J.L., Saleur H., “Exact solution of the anisotropic special transition in the $O(n)$ model in two dimensions”, Phys. Rev. Lett., 103 (2009), 145701, 4 pp., arXiv: 0909.2949 | DOI
[30] Dubail J., Jacobsen J.L., Saleur H., “Conformal boundary conditions in the critical ${\mathcal O}(n)$ model and dilute loop models”, Nuclear Phys. B, 827 (2010), 457–502, arXiv: 0905.1382 | DOI | MR | Zbl
[31] Filali G., Kitanine N., “Spin chains with non-diagonal boundaries and trigonometric SOS model with reflecting end”, SIGMA, 7 (2011), 012, 22 pp., arXiv: 1011.0660 | DOI | MR | Zbl
[32] Gainutdinov A.M., Nepomechie R.I., “Algebraic Bethe ansatz for the quantum group invariant open XXZ chain at roots of unity”, Nuclear Phys. B, 909 (2016), 796–839, arXiv: 1603.09249 | DOI | MR | Zbl
[33] Galleas W., Martins M.J., “Solution of the ${\rm SU}(N)$ vertex model with non-diagonal open boundaries”, Phys. Lett. A, 335 (2005), 167–174, arXiv: nlin.SI/0407027 | DOI | MR | Zbl
[34] Goodman F.M., Wenzl H., “The Temperley–Lieb algebra at roots of unity”, Pacific J. Math., 161 (1993), 307–334 | DOI | MR | Zbl
[35] Granet E., Jacobsen J.L., “On zero-remainder conditions in the Bethe ansatz”, J. High Energy Phys., 2020:3 (2020), 178, 14 pp., arXiv: 1910.07797 | DOI | MR | Zbl
[36] Ikhlef Y., Jacobsen J.L., Saleur H., “Three-point functions in $c\leq 1$ Liouville theory and conformal loop ensembles”, Phys. Rev. Lett., 116 (2016), 130601, 5 pp., arXiv: 1509.03538 | DOI | MR
[37] Inami T., Odake S., Zhang Y.Z., “Reflection $K$-matrices of the $19$-vertex model and $XXZ$ spin-$1$ chain with general boundary terms”, Nuclear Phys. B, 470 (1996), 419–432, arXiv: hep-th/9601049 | DOI | MR | Zbl
[38] Jacobsen J.L., Saleur H., “Combinatorial aspects of boundary loop models”, J. Stat. Mech. Theory Exp., 2008 | MR
[39] Jacobsen J.L., Saleur H., “Conformal boundary loop models”, Nuclear Phys. B, 788 (2008), 137–166, arXiv: math-ph/0611078 | DOI | MR | Zbl
[40] Jimbo M., “A $q$-difference analogue of $U({\mathfrak g})$ and the Yang–Baxter equation”, Lett. Math. Phys., 10 (1985), 63–69 | DOI | MR | Zbl
[41] Jimbo M., “A $q$-analogue of $U({\mathfrak g}{\mathfrak l}(N+1))$, Hecke algebra, and the Yang–Baxter equation”, Lett. Math. Phys., 11 (1986), 247–252 | DOI | MR | Zbl
[42] Jones V.F.R., “Baxterization”, Internat. J. Modern Phys. A, 6 (1991), 2035–2043 | DOI | MR | Zbl
[43] Kassel C., Quantum groups, Grad. Texts in Math., 155, Springer, New York, 1995 | DOI | MR | Zbl
[44] Kitanine N., Maillet J.M., Niccoli G., “Open spin chains with generic integrable boundaries: Baxter equation and Bethe ansatz completeness from separation of variables”, J. Stat. Mech. Theory Exp., 2014, P05015, 30 pp., arXiv: 1401.4901 | DOI | MR | Zbl
[45] Kupiainen A., Rhodes R., Vargas V., “Integrability of Liouville theory: proof of the DOZZ formula”, Ann. of Math., 191 (2020), 81–166, arXiv: 1707.08785 | DOI | MR | Zbl
[46] Mangazeev V.V., Lu X., “Boundary matrices for the higher spin six vertex model”, Nuclear Phys. B, 945 (2019), 114665, 21 pp., arXiv: 1903.00274 | DOI | MR | Zbl
[47] Martin P., Saleur H., “The blob algebra and the periodic Temperley–Lieb algebra”, Lett. Math. Phys., 30 (1994), 189–206, arXiv: hep-th/9302094 | DOI | MR | Zbl
[48] Martin P.P., “On Schur–Weyl duality, $A_n$ Hecke algebras and quantum ${\rm sl}(N)$ on $\bigotimes^{n+1}C^N$”, Infinite analysis, Part A, B (Kyoto, 1991), Adv. Ser. Math. Phys., 16, World Sci. Publ., River Edge, NJ, 1992, 645–673 | DOI | MR
[49] Martin P.P., McAnally D.S., “On commutants, dual pairs and nonsemisimple algebras from statistical mechanics”, Infinite analysis, Part A, B (Kyoto, 1991), Adv. Ser. Math. Phys., 16, World Sci. Publ., River Edge, NJ, 1992, 675–705 | DOI | MR
[50] Mukhin E., Tarasov V., Varchenko A., “Bethe algebra of homogeneous $XXX$ Heisenberg model has simple spectrum”, Comm. Math. Phys., 288 (2009), 1–42, arXiv: 0706.0688 | DOI | MR | Zbl
[51] Mukhin E., Tarasov V., Varchenko A., “Spaces of quasi-exponentials and representations of the Yangian $Y(\mathfrak{gl}_N)$”, Transform. Groups, 19 (2014), 861–885, arXiv: 1303.1578 | DOI | MR | Zbl
[52] Naĭmark M.A., “Decomposition of a tensor product of irreducible representations of the proper Lorentz group into irreducible representations. I The case of a tensor product of representations of the fundamental series”, Trudy Moskov. Mat. Obšč., 8, 1959, 121–153 | MR | Zbl
[53] Nepomechie R.I., “Functional relations and Bethe ansatz for the $XXZ$ chain”, J. Stat. Phys., 111 (2003), 1363–1376, arXiv: hep-th/0211001 | DOI | MR | Zbl
[54] Nepomechie R.I., “Bethe ansatz solution of the open $XXZ$ chain with nondiagonal boundary terms”, J. Phys. A, 37 (2004), 433–440, arXiv: hep-th/0304092 | DOI | MR | Zbl
[55] Nepomechie R.I., Ravanini F., “Completeness of the Bethe ansatz solution of the open $XXZ$ chain with nondiagonal boundary terms”, J. Phys. A, 36 (2003), 11391–11401, arXiv: hep-th/0307095 | DOI | MR | Zbl
[56] Pasquier V., Saleur H., “Common structures between finite systems and conformal field theories through quantum groups”, Nuclear Phys. B, 330 (1990), 523–556 | DOI | MR
[57] Simon D., “Construction of a coordinate Bethe ansatz for the asymmetric simple exclusion process with open boundaries”, J. Stat. Mech. Theory Exp., 2009 (2009), P07017, 28 pp., arXiv: 0903.4968 | DOI | MR | Zbl
[58] Sklyanin E.K., “Boundary conditions for integrable quantum systems”, J. Phys. A, 21 (1988), 2375–2389 | DOI | MR | Zbl
[59] Temperley H.N.V., Lieb E.H., “Relations between the “percolation” and “colouring” problem and other graph-theoretical problems associated with regular planar lattices: some exact results for the “percolation” problem”, Proc. Roy. Soc. London Ser. A, 322 (1971), 251–280 | DOI | MR | Zbl
[60] Wang Y., Yang W.-L., Wang Y., Shi K., Off-diagonal Bethe ansatz for exactly solvable models, Springer, Berlin, 2015 | MR | Zbl