@article{SIGMA_2023_19_a44,
author = {Song He and Yihong Wang and Yong Zhang and Peng Zhao},
title = {Notes on {Worldsheet-Like} {Variables} for {Cluster} {Configuration} {Spaces}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2023},
volume = {19},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a44/}
}
TY - JOUR AU - Song He AU - Yihong Wang AU - Yong Zhang AU - Peng Zhao TI - Notes on Worldsheet-Like Variables for Cluster Configuration Spaces JO - Symmetry, integrability and geometry: methods and applications PY - 2023 VL - 19 UR - http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a44/ LA - en ID - SIGMA_2023_19_a44 ER -
%0 Journal Article %A Song He %A Yihong Wang %A Yong Zhang %A Peng Zhao %T Notes on Worldsheet-Like Variables for Cluster Configuration Spaces %J Symmetry, integrability and geometry: methods and applications %D 2023 %V 19 %U http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a44/ %G en %F SIGMA_2023_19_a44
Song He; Yihong Wang; Yong Zhang; Peng Zhao. Notes on Worldsheet-Like Variables for Cluster Configuration Spaces. Symmetry, integrability and geometry: methods and applications, Tome 19 (2023). http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a44/
[1] Abhishek M., Hegde S., Jatkar D.P., Saha A.P., “Double soft theorem for generalised biadjoint scalar amplitudes”, SciPost Phys., 10 (2021), 036, 39 pp., arXiv: 2008.07271 | DOI | MR
[2] Agostini D., Brysiewicz T., Fevola C., Kühne L., Sturmfels B., Telen S., “Likelihood degenerations (with an appendix by Thomas Lam)”, Adv. Math., 414 (2023), 108863, 39 pp., arXiv: 2107.10518 | DOI | MR
[3] Arkani-Hamed N., Bai Y., He S., Yan G., “Scattering forms and the positive geometry of kinematics, color and the worldsheet”, J. High Energy Phys., 2018:5 (2018), 096, 76 pp., arXiv: 1711.09102 | DOI | MR
[4] Arkani-Hamed N., Bai Y., Lam T., “Positive geometries and canonical forms”, J. High Energy Phys., 2017:11 (2017), 039, 122 pp., arXiv: 1703.04541 | DOI | MR
[5] Arkani-Hamed N., He S., Lam T., “Cluster configuration spaces of finite type”, SIGMA, 17 (2021), 092, 41 pp., arXiv: 2005.11419 | DOI | MR | Zbl
[6] Arkani-Hamed N., He S., Lam T., “Stringy canonical forms”, J. High Energy Phys., 2021:2 (2021), 069, 59 pp., arXiv: 1912.08707 | DOI | MR
[7] Arkani-Hamed N., He S., Lam T., Thomas H., “Binary geometries, generalized particles and strings, and cluster algebras”, Phys. Rev. D, 107 (2023), 066015, 8 pp., arXiv: 1912.11764 | DOI | MR
[8] Arkani-Hamed N., He S., Salvatori G., Thomas H., “Causal diamonds, cluster polytopes and scattering amplitudes”, J. High Energy Phys., 2022:11 (2022), 049, 21 pp., arXiv: 1912.12948 | DOI | MR
[9] Arkani-Hamed N., Lam T., Spradlin M., “Non-perturbative geometries for planar $\mathcal{N} = 4$ SYM amplitudes”, J. High Energy Phys., 2021:3 (2021), 065, 14 pp., arXiv: 1912.08222 | DOI | MR
[10] Borges F., Cachazo F., “Generalized planar Feynman diagrams: collections”, J. High Energy Phys., 2020:11 (2020), 164, 27 pp., arXiv: 1910.10674 | DOI | MR | Zbl
[11] Breiding P., Timme S., “HomotopyContinuation.jl: a package for homotopy continuation in Julia”, Mathematical Software, Lecture Notes in Comput. Sci, 10931, Springer, Cham, 2018, 458–465, arXiv: 1711.10911 | DOI | Zbl
[12] Brown F.C.S., “Multiple zeta values and periods of moduli spaces $\overline{\mathfrak{M}}_{0,n}$”, Ann. Sci. Éc. Norm. Supér., 42 (2009), 371–489, arXiv: math.AG/0606419 | DOI | MR | Zbl
[13] Cachazo F., Early N., “Minimal kinematics: an all $k$ and $n$ peek into ${\rm Trop}^+{\rm G}(k,n)$”, SIGMA, 17 (2021), 078, 22 pp., arXiv: 2003.07958 | DOI | MR | Zbl
[14] Cachazo F., Early N., Planar kinematics: cyclic fixed points, mirror superpotential, $k$-dimensional Catalan numbers, and root polytopes, arXiv: 2010.09708
[15] Cachazo F., Early N., Guevara A., Mizera S., “Scattering equations: from projective spaces to tropical Grassmannians”, J. High Energy Phys., 2019:6 (2019), 039, 32 pp., arXiv: 1903.08904 | DOI | MR
[16] Cachazo F., Guevara A., Umbert B., Zhang Y., Planar matrices and arrays of Feynman diagrams, arXiv: 1912.09422
[17] Cachazo F., He S., Yuan E.Y., “Scattering of massless particles in arbitrary dimensions”, Phys. Rev. Lett., 113 (2014), 171601, 4 pp., arXiv: 1307.2199 | DOI
[18] Cachazo F., Mizera S., Zhang G., “Scattering equations: real solutions and particles on a line”, J. High Energy Phys., 2017:3 (2017), 151, 22 pp., arXiv: 1609.00008 | DOI | MR | Zbl
[19] Cachazo F., Rojas J.M., “Notes on biadjoint amplitudes, ${\rm Trop}\, G(3,7)$ and ${\rm X}(3,7)$ scattering equations”, J. High Energy Phys., 2020:4 (2020), 176, 13 pp., arXiv: 1906.05979 | DOI | MR | Zbl
[20] Cachazo F., Umbert B., Zhang Y., “Singular solutions in soft limits”, J. High Energy Phys., 2020:5 (2020), 148, 32 pp., arXiv: 1911.02594 | DOI | MR
[21] Chicherin D., Henn J.M., Papathanasiou G., “Cluster algebras for Feynman integrals”, Phys. Rev. Lett., 126 (2021), 091603, 7 pp., arXiv: 2012.12285 | DOI | MR
[22] Deligne P., Mumford D., “The irreducibility of the space of curves of given genus”, Inst. Hautes Études Sci. Publ. Math., 36 (1969), 75–109 | DOI | MR | Zbl
[23] Drummond J., Foster J., Gürdoğan O., “Cluster adjacency beyond MHV”, J. High Energy Phys., 2019:3 (2019), 086, 43 pp., arXiv: 1810.08149 | DOI | MR
[24] Drummond J., Foster J., Gürdoğan O., Kalousios C., “Tropical Grassmannians, cluster algebras and scattering amplitudes”, J. High Energy Phys., 2020:4 (2020), 146, 22 pp., arXiv: 1907.01053 | DOI | MR | Zbl
[25] Drummond J., Foster J., Gürdoğan O., Kalousios C., “Algebraic singularities of scattering amplitudes from tropical geometry”, J. High Energy Phys., 2021:4 (2021), 002, 18 pp., arXiv: 1912.08217 | DOI | MR
[26] Drummond J., Foster J., Gürdoğan O., Kalousios C., “Tropical fans, scattering equations and amplitudes”, J. High Energy Phys., 2021:11 (2021), 071, 26 pp., arXiv: 2002.04624 | DOI | MR
[27] Early N., Planar kinematic invariants, matroid subdivisions and generalized Feynman diagrams, arXiv: 1912.13513
[28] Early N., “From weakly separated collections to matroid subdivisions”, Comb. Theory, 2:2 (2022), 2, 35 pp., arXiv: 1910.11522 | DOI | MR
[29] Fock V.V., Goncharov A.B., “Cluster ensembles, quantization and the dilogarithm”, Ann. Sci. Éc. Norm. Supér, 42 (2009), 865–930, arXiv: math.AG/0311245 | DOI | MR | Zbl
[30] Fomin S., Shapiro M., Thurston D., “Cluster algebras and triangulated surfaces. I Cluster complexes”, Acta Math., 201 (2008), 83–146, arXiv: math.RA/0608367 | DOI | MR | Zbl
[31] Fomin S., Zelevinsky A., “Cluster algebras. II Finite type classification”, Invent. Math., 154 (2003), 63–121, arXiv: math.RA/0208229 | DOI | MR | Zbl
[32] Fomin S., Zelevinsky A., “$Y$-systems and generalized associahedra”, Ann. of Math., 158 (2003), 977–1018, arXiv: hep-th/0111053 | DOI | MR | Zbl
[33] Gekhtman M., Shapiro M., Vainshtein A., “Cluster algebras and Weil–Petersson forms”, Duke Math. J., 127 (2005), 291–311, arXiv: math.QA/0309138 | DOI | MR | Zbl
[34] Guevara A., Zhang Y., Planar matrices and arrays of Feynman diagrams: poles for higher $k$, arXiv: 2007.15679
[35] He S., Li Z., Yang Q., “Notes on cluster algebras and some all-loop Feynman integrals”, J. High Energy Phys., 2021:6 (2021), 119, 26 pp., arXiv: 2103.02796 | DOI | MR
[36] He S., Li Z., Yang Q., “Truncated cluster algebras and Feynman integrals with algebraic letters”, J. High Energy Phys., 2021:12 (2021), 110, 28 pp., arXiv: 2106.09314 | DOI | MR
[37] He S., Li Z., Yang Q., “Comments on all-loop constraints for scattering amplitudes and Feynman integrals”, J. High Energy Phys., 2022:1 (2022), 073, 23 pp., arXiv: 2108.07959 | DOI | MR
[38] He S., Ren L., Zhang Y., “Notes on polytopes, amplitudes and boundary configurations for Grassmannian string integrals”, J. High Energy Phys., 2020:4 (2020), 140, 37 pp., arXiv: 2001.09603 | DOI | MR
[39] Henke N., Papathanasiou G., How tropical are seven- and eight-particle amplitudes?, J. High Energy Phys., 2020:8 (2020), 005, 49 pp., arXiv: 1912.08254 | DOI | MR
[40] Henke N., Papathanasiou G., “Singularities of eight- and nine-particle amplitudes from cluster algebras and tropical geometry”, J. High Energy Phys., 2021:10 (2021), 007, 60 pp., arXiv: 2106.01392 | DOI | MR
[41] Kalousios C., “Massless scattering at special kinematics as Jacobi polynomials”, J. Phys. A, 47 (2014), 215402, 8 pp., arXiv: 1312.7743 | DOI | MR | Zbl
[42] Knudsen F.F., “The projectivity of the moduli space of stable curves. II The stacks $M_{g,n}$”, Math. Scand., 52 (1983), 161–199 | DOI | MR | Zbl
[43] Koba Z., Nielsen H.B., “Manifestly crossing invariant parametrization of $n$ meson amplitude”, Nuclear Phys. B, 12 (1969), 517–536 | DOI
[44] Koba Z., Nielsen H.B., “Reaction amplitude for $n$ mesons: a generalization of the Veneziano–Bardakci–Ruegg–Virasora model”, Nuclear Phys. B, 10 (1969), 633–655 | DOI
[45] Łukowski T., Parisi M., Williams L.K., “The positive tropical Grassmannian, the hypersimplex, and the $m=2$ amplituhedron”, Int. Math. Res. Not. (to appear) , arXiv: 2002.06164 | DOI
[46] Orlik P., Solomon L., “Combinatorics and topology of complements of hyperplanes”, Invent. Math., 56 (1980), 167–189 | DOI | MR | Zbl
[47] Ren L., Spradlin M., Volovich A., “Symbol alphabets from tensor diagrams”, J. High Energy Phys., 2021:12 (2021), 079, 41 pp., arXiv: 2106.01405 | DOI | MR
[48] Skorobogatov A.N., “On the number of representations of matroids over finite fields”, Des. Codes Cryptogr., 9 (1996), 215–226 | DOI | MR | Zbl
[49] Sturmfels B., Telen S., “Likelihood equations and scattering amplitudes”, Algebr. Stat., 12 (2021), 167–186, arXiv: 2012.05041 | DOI | MR
[50] Volkov A.Yu., “On the periodicity conjecture for $Y$-systems”, Comm. Math. Phys., 276 (2007), 509–517 | DOI | MR | Zbl
[51] Wang Y., Zhao P., $Y$-systems, $z$-variables, and cluster alphabets, in preparation
[52] Zamolodchikov A.B., “On the thermodynamic Bethe ansatz equations for reflectionless $ADE$ scattering theories”, Phys. Lett. B, 253 (1991), 391–394 | DOI | MR