Mots-clés : gluon, graviton
@article{SIGMA_2023_19_a43,
author = {Jorge Mago and Lecheng Ren and Akshay Yelleshpur Srikant and Anastasia Volovich},
title = {Deformed $w_{1+\infty}$ {Algebras} in the {Celestial} {CFT}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2023},
volume = {19},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a43/}
}
TY - JOUR
AU - Jorge Mago
AU - Lecheng Ren
AU - Akshay Yelleshpur Srikant
AU - Anastasia Volovich
TI - Deformed $w_{1+\infty}$ Algebras in the Celestial CFT
JO - Symmetry, integrability and geometry: methods and applications
PY - 2023
VL - 19
UR - http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a43/
LA - en
ID - SIGMA_2023_19_a43
ER -
%0 Journal Article
%A Jorge Mago
%A Lecheng Ren
%A Akshay Yelleshpur Srikant
%A Anastasia Volovich
%T Deformed $w_{1+\infty}$ Algebras in the Celestial CFT
%J Symmetry, integrability and geometry: methods and applications
%D 2023
%V 19
%U http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a43/
%G en
%F SIGMA_2023_19_a43
Jorge Mago; Lecheng Ren; Akshay Yelleshpur Srikant; Anastasia Volovich. Deformed $w_{1+\infty}$ Algebras in the Celestial CFT. Symmetry, integrability and geometry: methods and applications, Tome 19 (2023). http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a43/
[1] Adamo T., Mason L., Sharma A., “Celestial amplitudes and conformal soft theorems”, Classical Quantum Gravity, 36 (2019), 205018, 22 pp., arXiv: 1905.09224 | DOI | MR | Zbl
[2] Adamo T., Mason L., Sharma A., “Celestial $w_{1+\infty}$ symmetries from twistor space”, SIGMA, 18 (2022), 016, 23 pp., arXiv: 2110.06066 | DOI | MR | Zbl
[3] Ahn C., “Towards a supersymmetric $w_{1+\infty}$ symmetry in the celestial conformal field theory”, Phys. Rev. D, 105 (2022), 086028, 13 pp., arXiv: 2111.04268 | DOI | MR
[4] Aneesh P.B., Compère G., de Gioia L.P., Mol I., Swidler B., “Celestial holography: Lectures on asymptotic symmetries”, SciPost Phys. Lect. Notes, 2022 (2022), 47, 27 pp., arXiv: 2109.00997 | DOI
[5] Bakas I., “The large-$N$ limit of extended conformal symmetries”, Phys. Lett. B, 228 (1989), 57–63 | DOI | MR
[6] Ball A., “Celestial locality and the Jacobi identity”, J. High Energy Phys., 2023:1 (2023), 146, 16 pp., arXiv: 2211.09151 | DOI | MR
[7] Bergshoeff E., Howe P.S., Pope C.N., Sezgin E., Shen X., Stelle K.S., “Quantisation deforms $w_\infty$ to $W_\infty$ gravity”, Nuclear Phys. B, 363 (1991), 163–184 | DOI | MR
[8] Bern Z., Chalmers G., Dixon L., Kosower D.A., “One-loop $n$-gluon amplitudes with maximal helicity violation via collinear limits”, Phys. Rev. Lett., 72 (1994), 2134–3237, arXiv: hep-ph/9312333 | DOI
[9] Bern Z., Davies S., Nohle J., “On loop corrections to subleading soft behavior of gluons and gravitons”, Phys. Rev. D, 90 (2014), 085015, 10 pp., arXiv: 1405.1015 | DOI
[10] Bern Z., Del Duca V., Kilgore W.B., Schmidt C.R., “Infrared behavior of one-loop QCD amplitudes at next-to-next-to-leading order”, Phys. Rev. D, 60 (1999), 116001, 25 pp., arXiv: hep-ph/9903516 | DOI
[11] Bern Z., Del Duca V., Schmidt C.R., “The infrared behavior of one-loop gluon amplitudes at next-to-next-to-leading order”, Phys. Lett. B, 445 (1998), 168–177, arXiv: hep-ph/9810409 | DOI
[12] Bern Z., Dixon L., Perelstein M., Rozowsky J.S., “One-loop $n$-point helicity amplitudes in (self-dual) gravity”, Phys. Lett. B, 444 (1998), 273–283, arXiv: hep-th/9809160 | DOI | MR
[13] Bu W., Heuveline S., Skinner D., “Moyal deformations, $W_{1+\infty}$ and celestial holography”, J. High Energy Phys., 2022:12 (2022), 011, 20 pp., arXiv: 2208.13750 | DOI | MR
[14] Cachazo F., Yuan E.Y., Are soft theorems renormalized?, arXiv: 1405.3413
[15] Casali E., “Soft sub-leading divergences in Yang–Mills amplitudes”, J. High Energy Phys., 2014:8 (2014), 077, 5 pp., arXiv: 1404.5551 | DOI | MR
[16] Chalmers G., Siegel W., “Self-dual sector of QCD amplitudes”, Phys. Rev. D, 54 (1996), 7628–7633, arXiv: hep-th/9606061 | DOI
[17] Dixon L.J., Glover E.W.N., Khoze V.V., “MHV rules for Higgs plus multi-gluon amplitudes”, J. High Energy Phys., 2004:12 (2004), 015, 35 pp., arXiv: hep-th/0411092 | DOI | MR
[18] Donnay L., Puhm A., Strominger A., “Conformally soft photons and gravitons”, J. High Energy Phys., 2019:1 (2019), 184, 22 pp., arXiv: 1810.05219 | DOI | MR | Zbl
[19] Elvang H., Huang Y.-T., Scattering amplitudes, arXiv: 1308.1697
[20] Elvang H., Jones C.R.T., Naculich S.G., “Soft photon and graviton theorems in effective field theory”, Phys. Rev. Lett., 118 (2017), 231601, 6 pp., arXiv: 1611.07534 | DOI
[21] Fairlie D.B., Nuyts J., “Deformations and renormalisations of $W_\infty$”, Comm. Math. Phys., 134 (1990), 413–419 | DOI | MR | Zbl
[22] Fan W., Fotopoulos A., Taylor T.R., “Soft limits of Yang–Mills amplitudes and conformal correlators”, J. High Energy Phys., 2019:5 (2019), 121, 15 pp., arXiv: 1903.01676 | DOI | MR
[23] Guevara A., Notes on conformal soft theorems and recursion relations in gravity, arXiv: 1906.07810
[24] Guevara A., Himwich E., Pate M., Strominger A., “Holographic symmetry algebras for gauge theory and gravity”, J. High Energy Phys., 2021:11 (2021), 152, 17 pp., arXiv: 2103.03961 | DOI | MR
[25] Hamada Y., Shiu G., “Infinite set of soft theorems in gauge-gravity theories as Ward–Takahashi identities”, Phys. Rev. Lett., 120 (2018), 201601, 6 pp., arXiv: 1801.05528 | DOI
[26] He S., Huang Y.-T., Wen C., “Loop corrections to soft theorems in gauge theories and gravity”, J. High Energy Phys., 2014:12 (2014), 115, 21 pp., arXiv: 1405.1410 | DOI | MR
[27] Himwich E., Pate M., Singh K., “Celestial operator product expansions and $w_{1+\infty}$ symmetry for all spins”, J. High Energy Phys., 2022:1 (2022), 080, 28 pp., arXiv: 2108.07763 | DOI | MR
[28] Jiang H., “Celestial OPEs and $w_{1+\infty}$ algebra from worldsheet in string theory”, J. High Energy Phys., 2022:1 (2022), 101, 57 pp., arXiv: 2110.04255 | DOI | MR
[29] Jiang H., “Holographic chiral algebra: supersymmetry, infinite Ward identities, and EFTs”, J. High Energy Phys., 2022:1 (2022), 113, 38 pp., arXiv: 2108.08799 | DOI | MR
[30] Klose T., McLoughlin T., Nandan D., Plefka J., Travaglini G., “Double-soft limits of gluons and gravitons”, J. High Energy Phys., 2015:7 (2015), 135, 30 pp., arXiv: 1504.05558 | DOI | MR | Zbl
[31] Li Z.-Z., Lin H.-H., Zhang S.-Q., “Infinite soft theorems from gauge symmetry”, Phys. Rev. D, 98 (2018), 045004, 8 pp., arXiv: 1802.03148 | DOI | MR
[32] Mahlon G., “Multigluon helicity amplitudes involving a quark loop”, Phys. Rev. D, 49 (1994), 4438–4453, arXiv: hep-ph/9312276 | DOI
[33] Nandan D., Schreiber A., Volovich A., Zlotnikov M., “Celestial amplitudes: conformal partial waves and soft limits”, J. High Energy Phys., 2019:10 (2019), 018, 13 pp., arXiv: 1904.10940 | DOI | MR
[34] Odake S., Sano T., “$W_{1+\infty}$ and super-$W_\infty$ algebras with ${\rm SU}(N)$ symmetry”, Phys. Lett. B, 258 (1991), 369–374 | DOI | MR
[35] Pasterski S., “Lectures on celestial amplitudes”, Eur. Phys. J. C, 81 (2021), 1062, 24 pp., arXiv: 2108.04801 | DOI
[36] Pasterski S., Shao S.-H., “Conformal basis for flat space amplitudes”, Phys. Rev. D, 96 (2017), 065022, 17 pp., arXiv: 1705.01027 | DOI | MR
[37] Pasterski S., Shao S.-H., Strominger A., “Flat space amplitudes and conformal symmetry of the celestial sphere”, Phys. Rev. D, 96 (2017), 065026, 7 pp., arXiv: 1701.00049 | DOI | MR
[38] Pasterski S., Shao S.-H., Strominger A., “Gluon amplitudes as $2d$ conformal correlators”, Phys. Rev. D, 96 (2017), 085006, 13 pp., arXiv: 1706.03917 | DOI | MR
[39] Pate M., Raclariu A.-M., Strominger A., “Conformally soft theorem in gauge theory”, Phys. Rev. D, 100 (2019), 085017, 10 pp., arXiv: 1904.10831 | DOI | MR
[40] Pate M., Raclariu A.-M., Strominger A., Yuan E.Y., “Celestial operator products of gluons and gravitons”, Rev. Math. Phys., 33 (2021), 2140003, 28 pp., arXiv: 1910.07424 | DOI | MR
[41] Pope C.N., “Lectures on W algebras and W gravity”, Summer School in High-energy Physics and Cosmology (Trieste, Italy, 1991), v. 1–2, 827–867, arXiv: hep-th/9112076
[42] Pope C.N., Romans L.J., Shen X., “The complete structure of $W_\infty$”, Phys. Lett. B, 236 (1990), 173–178 | DOI | MR
[43] Pope C.N., Shen X., Romans L.J., “$W_\infty$ and the Racah–Wigner algebra”, Nuclear Phys. B, 339 (1990), 191–221 | DOI | MR
[44] Pope C.N., Shen X., Xu K.W., Yuan K., “${\rm SL}(\infty,R)$ symmetry of quantum $W_\infty$ gravity”, Nuclear Phys. B, 376 (1992), 52–74, arXiv: hep-th/9201023 | DOI | MR
[45] Puhm A., “Conformally soft theorem in gravity”, J. High Energy Phys., 2020:9 (2020), 130, 14 pp., arXiv: 1905.09799 | DOI | MR
[46] Raclariu A.-M., Lectures on celestial holography, arXiv: 2107.02075
[47] Strominger A., Lectures on the infrared structure of gravity and gauge theory, Princeton University Press, Princeton, NJ, 2018, arXiv: 1703.05448 | DOI | MR | Zbl
[48] Strominger A., “$w_{1+\infty}$ algebra and the celestial sphere: infinite towers of soft graviton, photon, and gluon symmetries”, Phys. Rev. Lett., 127 (2021), 221601, 5 pp., arXiv: 2105.14346 | DOI | MR
[49] Volovich A., Wen C., Zlotnikov M., “Double soft theorems in gauge and string theories”, J. High Energy Phys., 2015:7 (2015), 095, 25 pp., arXiv: 1504.05559 | DOI | MR
[50] Weinberg S., “Infrared photons and gravitons”, Phys. Rev., 140 (1965), B516–B524 | DOI | MR