The Asymptotic Structure of the Centred Hyperbolic 2-Monopole Moduli Space
Symmetry, integrability and geometry: methods and applications, Tome 19 (2023) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We construct an asymptotic metric on the moduli space of two centred hyperbolic monopoles by working in the point particle approximation, that is treating well-separated monopoles as point particles with an electric, magnetic and scalar charge and re-interpreting the dynamics of the 2-particle system as geodesic motion with respect to some metric. The corresponding analysis in the Euclidean case famously yields the negative mass Taub-NUT metric, which asymptotically approximates the $L ^2 $ metric on the moduli space of two Euclidean monopoles, the Atiyah–Hitchin metric. An important difference with the Euclidean case is that, due to the absence of Galilean symmetry, in the hyperbolic case it is not possible to factor out the centre of mass motion. Nevertheless we show that we can consistently restrict to a 3-dimensional configuration space by considering antipodal configurations. In complete parallel with the Euclidean case, the metric that we obtain is then the hyperbolic analogue of negative mass Taub-NUT. We also show how the metric obtained is related to the asymptotic form of a hyperbolic analogue of the Atiyah–Hitchin metric constructed by Hitchin.
Keywords: moduli space metrics.
Mots-clés : hyperbolic monopoles
@article{SIGMA_2023_19_a42,
     author = {Guido Franchetti and Calum Ross},
     title = {The {Asymptotic} {Structure} of the {Centred} {Hyperbolic} {2-Monopole} {Moduli} {Space}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2023},
     volume = {19},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a42/}
}
TY  - JOUR
AU  - Guido Franchetti
AU  - Calum Ross
TI  - The Asymptotic Structure of the Centred Hyperbolic 2-Monopole Moduli Space
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2023
VL  - 19
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a42/
LA  - en
ID  - SIGMA_2023_19_a42
ER  - 
%0 Journal Article
%A Guido Franchetti
%A Calum Ross
%T The Asymptotic Structure of the Centred Hyperbolic 2-Monopole Moduli Space
%J Symmetry, integrability and geometry: methods and applications
%D 2023
%V 19
%U http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a42/
%G en
%F SIGMA_2023_19_a42
Guido Franchetti; Calum Ross. The Asymptotic Structure of the Centred Hyperbolic 2-Monopole Moduli Space. Symmetry, integrability and geometry: methods and applications, Tome 19 (2023). http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a42/

[1] Atiyah M., “Magnetic monopoles in hyperbolic space”: M. Atiyah, Collected works, v. 5, Oxford Science Publications, Gauge theories, The Clarendon Press, Oxford University Press, New York, 1988, 577–611 | MR

[2] Atiyah M., Hitchin N., The geometry and dynamics of magnetic monopoles, M.B. Porter Lectures, Princeton University Press, Princeton, NJ, 1988 | DOI | MR | Zbl

[3] Atiyah M., Lebrun C., “Curvature, cones and characteristic numbers”, Math. Proc. Cambridge Philos. Soc., 155 (2013), 13–37, arXiv: 1203.6389 | DOI | MR | Zbl

[4] Bielawski R., Schwachhöfer L., “Hypercomplex limits of pluricomplex structures and the Euclidean limit of hyperbolic monopoles”, Ann. Global Anal. Geom., 44 (2013), 245–256, arXiv: 1201.0781 | DOI | MR | Zbl

[5] Bielawski R., Schwachhöfer L., “Pluricomplex geometry and hyperbolic monopoles”, Comm. Math. Phys., 323 (2013), 1–34, arXiv: 1104.2270 | DOI | MR | Zbl

[6] Bolognesi S., Cockburn A., Sutcliffe P., “Hyperbolic monopoles, JNR data and spectral curves”, Nonlinearity, 28 (2015), 211–235 | DOI | MR | Zbl

[7] Braam P.J., Austin D.M., “Boundary values of hyperbolic monopoles”, Nonlinearity, 3 (1990), 809–823 | DOI | MR | Zbl

[8] Cannon J.W., Floyd W.J., Kenyon R., Parry W.R., “Hyperbolic geometry”, Flavors of Geometry, Math. Sci. Res. Inst. Publ., 31, Cambridge University Press, Cambridge, 1997, 59–115 | MR | Zbl

[9] Diacu F., “The non-existence of centre-of-mass and linear-momentum integrals in the curved $N$-body problem”, Lib. Math. (N.S.), 32 (2012), 25–37, arXiv: 1202.4739 | DOI | MR | Zbl

[10] Donaldson S.K., “Nahm's equations and the classification of monopoles”, Comm. Math. Phys., 96 (1984), 387–407 | DOI | MR | Zbl

[11] Fehér L.G., Horváthy P.A., “Dynamical symmetry of monopole scattering”, Phys. Lett. B, 183 (1987), 182–186 | DOI | MR

[12] Franchetti G., “Harmonic spinors on a family of Einstein manifolds”, Nonlinearity, 31 (2018), 2419–2441, arXiv: 1705.02666 | DOI | MR | Zbl

[13] Franchetti G., Maldonado R., “Monopoles, instantons, and the Helmholtz equation”, J. Math. Phys., 57 (2016), 073502, 14 pp., arXiv: 1603.09575 | DOI | MR | Zbl

[14] Franchetti G., Schroers B.J., “Adiabatic dynamics of instantons on $S^4$”, Comm. Math. Phys., 353 (2017), 185–228, arXiv: 1508.06566 | DOI | MR | Zbl

[15] Galperin G.A., “A concept of the mass center of a system of material points in the constant curvature spaces”, Comm. Math. Phys., 154 (1993), 63–84 | DOI | MR | Zbl

[16] García-Naranjo L.C., “Some remarks about the centre of mass of two particles in spaces of constant curvature”, J. Geom. Mech., 12 (2020), 435–446, arXiv: 2009.13455 | DOI | MR | Zbl

[17] García-Naranjo L.C., Marrero J.C., Pérez-Chavela E., Rodríguez-Olmos M., “Classification and stability of relative equilibria for the two-body problem in the hyperbolic space of dimension 2”, J. Differential Equations, 260 (2016), 6375–6404, arXiv: 1505.01452 | DOI | MR | Zbl

[18] Gibbons G.W., Manton N.S., “Classical and quantum dynamics of BPS monopoles”, Nuclear Phys. B, 274 (1986), 183–224 | DOI | MR

[19] Gibbons G.W., Manton N.S., “The moduli space metric for well-separated BPS monopoles”, Phys. Lett. B, 356 (1995), 32–38, arXiv: hep-th/9506052 | DOI | MR

[20] Gibbons G.W., Warnick C.M., “Hidden symmetry of hyperbolic monopole motion”, J. Geom. Phys., 57 (2007), 2286–2315, arXiv: hep-th/0609051 | DOI | MR | Zbl

[21] Hawking S.W., “Gravitational instantons”, Phys. Lett. A, 60 (1977), 81–83 | DOI | MR

[22] Hitchin N.J., “A new family of Einstein metrics”, Manifolds and Geometry (Pisa, 1993), Sympos. Math., 36, Cambridge University Press, Cambridge, 1996, 190–222 | MR | Zbl

[23] Kronheimer P., Monopoles and Taub-NU Metrics, Master's Thesis, Oxford University, 1985

[24] LeBrun C., “Explicit self-dual metrics on $C{\rm P}_2\#\cdots\#C{\rm P}_2$”, J. Differential Geom., 34 (1991), 223–253 | DOI | MR

[25] Manton N.S., “A remark on the scattering of BPS monopoles”, Phys. Lett. B, 110 (1982), 54–56 | DOI | MR | Zbl

[26] Manton N.S., “Monopole interactions at long range”, Phys. Lett. B, 154 (1985), 397–400 | DOI | MR

[27] Manton N.S., “Errata: “Monopole interactions at long range””, Phys. Lett. B, 157 (1985), 475 | DOI | MR

[28] Manton N.S., Sutcliffe P., Topological solitons, Cambridge Monogr. Math. Phys., Cambridge University Press, Cambridge, 2004 | DOI | MR | Zbl

[29] Murray M.K., Norbury P., Singer M.A., “Hyperbolic monopoles and holomorphic spheres”, Ann. Global Anal. Geom., 23 (2003), 101–128, arXiv: math.DG/0111202 | DOI | MR | Zbl

[30] Nash O., “A new approach to monopole moduli spaces”, Nonlinearity, 20 (2007), 1645–1675, arXiv: math.DG/0610295 | DOI | MR | Zbl

[31] Nash O., “Singular hyperbolic monopoles”, Comm. Math. Phys., 277 (2008), 161–187 | DOI | MR | Zbl

[32] Schroers B.J., Singer M.A., “$D_k$ gravitational instantons as superpositions of Atiyah–Hitchin and Taub-NUT geometries”, Q. J. Math., 72 (2021), 277–337, arXiv: 2004.02759 | DOI | MR | Zbl

[33] Shchepetilov A.V., “Two-body problem on two-point homogeneous spaces, invariant differential operators and the mass center concept”, J. Geom. Phys., 48 (2003), 245–274, arXiv: math-ph/0203050 | DOI | MR | Zbl

[34] Sutcliffe P., “A hyperbolic analogue of the Atiyah–Hitchin manifold”, J. High Energy Phys., 2022:1 (2022), 090, 14 pp., arXiv: 2112.02949 | DOI | MR

[35] Sutcliffe P., “Boundary metrics on soliton moduli spaces”, J. High Energy Phys., 2022:1 (2022), 118, 10 pp., arXiv: 2110.14572 | DOI | MR

[36] Tod K.P., “Self-dual Einstein metrics from the Painlevé VI equation”, Phys. Lett. A, 190 (1994), 221–224 | DOI | MR | Zbl