Mots-clés : hyperbolic monopoles
@article{SIGMA_2023_19_a42,
author = {Guido Franchetti and Calum Ross},
title = {The {Asymptotic} {Structure} of the {Centred} {Hyperbolic} {2-Monopole} {Moduli} {Space}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2023},
volume = {19},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a42/}
}
TY - JOUR AU - Guido Franchetti AU - Calum Ross TI - The Asymptotic Structure of the Centred Hyperbolic 2-Monopole Moduli Space JO - Symmetry, integrability and geometry: methods and applications PY - 2023 VL - 19 UR - http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a42/ LA - en ID - SIGMA_2023_19_a42 ER -
Guido Franchetti; Calum Ross. The Asymptotic Structure of the Centred Hyperbolic 2-Monopole Moduli Space. Symmetry, integrability and geometry: methods and applications, Tome 19 (2023). http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a42/
[1] Atiyah M., “Magnetic monopoles in hyperbolic space”: M. Atiyah, Collected works, v. 5, Oxford Science Publications, Gauge theories, The Clarendon Press, Oxford University Press, New York, 1988, 577–611 | MR
[2] Atiyah M., Hitchin N., The geometry and dynamics of magnetic monopoles, M.B. Porter Lectures, Princeton University Press, Princeton, NJ, 1988 | DOI | MR | Zbl
[3] Atiyah M., Lebrun C., “Curvature, cones and characteristic numbers”, Math. Proc. Cambridge Philos. Soc., 155 (2013), 13–37, arXiv: 1203.6389 | DOI | MR | Zbl
[4] Bielawski R., Schwachhöfer L., “Hypercomplex limits of pluricomplex structures and the Euclidean limit of hyperbolic monopoles”, Ann. Global Anal. Geom., 44 (2013), 245–256, arXiv: 1201.0781 | DOI | MR | Zbl
[5] Bielawski R., Schwachhöfer L., “Pluricomplex geometry and hyperbolic monopoles”, Comm. Math. Phys., 323 (2013), 1–34, arXiv: 1104.2270 | DOI | MR | Zbl
[6] Bolognesi S., Cockburn A., Sutcliffe P., “Hyperbolic monopoles, JNR data and spectral curves”, Nonlinearity, 28 (2015), 211–235 | DOI | MR | Zbl
[7] Braam P.J., Austin D.M., “Boundary values of hyperbolic monopoles”, Nonlinearity, 3 (1990), 809–823 | DOI | MR | Zbl
[8] Cannon J.W., Floyd W.J., Kenyon R., Parry W.R., “Hyperbolic geometry”, Flavors of Geometry, Math. Sci. Res. Inst. Publ., 31, Cambridge University Press, Cambridge, 1997, 59–115 | MR | Zbl
[9] Diacu F., “The non-existence of centre-of-mass and linear-momentum integrals in the curved $N$-body problem”, Lib. Math. (N.S.), 32 (2012), 25–37, arXiv: 1202.4739 | DOI | MR | Zbl
[10] Donaldson S.K., “Nahm's equations and the classification of monopoles”, Comm. Math. Phys., 96 (1984), 387–407 | DOI | MR | Zbl
[11] Fehér L.G., Horváthy P.A., “Dynamical symmetry of monopole scattering”, Phys. Lett. B, 183 (1987), 182–186 | DOI | MR
[12] Franchetti G., “Harmonic spinors on a family of Einstein manifolds”, Nonlinearity, 31 (2018), 2419–2441, arXiv: 1705.02666 | DOI | MR | Zbl
[13] Franchetti G., Maldonado R., “Monopoles, instantons, and the Helmholtz equation”, J. Math. Phys., 57 (2016), 073502, 14 pp., arXiv: 1603.09575 | DOI | MR | Zbl
[14] Franchetti G., Schroers B.J., “Adiabatic dynamics of instantons on $S^4$”, Comm. Math. Phys., 353 (2017), 185–228, arXiv: 1508.06566 | DOI | MR | Zbl
[15] Galperin G.A., “A concept of the mass center of a system of material points in the constant curvature spaces”, Comm. Math. Phys., 154 (1993), 63–84 | DOI | MR | Zbl
[16] García-Naranjo L.C., “Some remarks about the centre of mass of two particles in spaces of constant curvature”, J. Geom. Mech., 12 (2020), 435–446, arXiv: 2009.13455 | DOI | MR | Zbl
[17] García-Naranjo L.C., Marrero J.C., Pérez-Chavela E., Rodríguez-Olmos M., “Classification and stability of relative equilibria for the two-body problem in the hyperbolic space of dimension 2”, J. Differential Equations, 260 (2016), 6375–6404, arXiv: 1505.01452 | DOI | MR | Zbl
[18] Gibbons G.W., Manton N.S., “Classical and quantum dynamics of BPS monopoles”, Nuclear Phys. B, 274 (1986), 183–224 | DOI | MR
[19] Gibbons G.W., Manton N.S., “The moduli space metric for well-separated BPS monopoles”, Phys. Lett. B, 356 (1995), 32–38, arXiv: hep-th/9506052 | DOI | MR
[20] Gibbons G.W., Warnick C.M., “Hidden symmetry of hyperbolic monopole motion”, J. Geom. Phys., 57 (2007), 2286–2315, arXiv: hep-th/0609051 | DOI | MR | Zbl
[21] Hawking S.W., “Gravitational instantons”, Phys. Lett. A, 60 (1977), 81–83 | DOI | MR
[22] Hitchin N.J., “A new family of Einstein metrics”, Manifolds and Geometry (Pisa, 1993), Sympos. Math., 36, Cambridge University Press, Cambridge, 1996, 190–222 | MR | Zbl
[23] Kronheimer P., Monopoles and Taub-NU Metrics, Master's Thesis, Oxford University, 1985
[24] LeBrun C., “Explicit self-dual metrics on $C{\rm P}_2\#\cdots\#C{\rm P}_2$”, J. Differential Geom., 34 (1991), 223–253 | DOI | MR
[25] Manton N.S., “A remark on the scattering of BPS monopoles”, Phys. Lett. B, 110 (1982), 54–56 | DOI | MR | Zbl
[26] Manton N.S., “Monopole interactions at long range”, Phys. Lett. B, 154 (1985), 397–400 | DOI | MR
[27] Manton N.S., “Errata: “Monopole interactions at long range””, Phys. Lett. B, 157 (1985), 475 | DOI | MR
[28] Manton N.S., Sutcliffe P., Topological solitons, Cambridge Monogr. Math. Phys., Cambridge University Press, Cambridge, 2004 | DOI | MR | Zbl
[29] Murray M.K., Norbury P., Singer M.A., “Hyperbolic monopoles and holomorphic spheres”, Ann. Global Anal. Geom., 23 (2003), 101–128, arXiv: math.DG/0111202 | DOI | MR | Zbl
[30] Nash O., “A new approach to monopole moduli spaces”, Nonlinearity, 20 (2007), 1645–1675, arXiv: math.DG/0610295 | DOI | MR | Zbl
[31] Nash O., “Singular hyperbolic monopoles”, Comm. Math. Phys., 277 (2008), 161–187 | DOI | MR | Zbl
[32] Schroers B.J., Singer M.A., “$D_k$ gravitational instantons as superpositions of Atiyah–Hitchin and Taub-NUT geometries”, Q. J. Math., 72 (2021), 277–337, arXiv: 2004.02759 | DOI | MR | Zbl
[33] Shchepetilov A.V., “Two-body problem on two-point homogeneous spaces, invariant differential operators and the mass center concept”, J. Geom. Phys., 48 (2003), 245–274, arXiv: math-ph/0203050 | DOI | MR | Zbl
[34] Sutcliffe P., “A hyperbolic analogue of the Atiyah–Hitchin manifold”, J. High Energy Phys., 2022:1 (2022), 090, 14 pp., arXiv: 2112.02949 | DOI | MR
[35] Sutcliffe P., “Boundary metrics on soliton moduli spaces”, J. High Energy Phys., 2022:1 (2022), 118, 10 pp., arXiv: 2110.14572 | DOI | MR
[36] Tod K.P., “Self-dual Einstein metrics from the Painlevé VI equation”, Phys. Lett. A, 190 (1994), 221–224 | DOI | MR | Zbl