Mots-clés : Skyrmions.
@article{SIGMA_2023_19_a41,
author = {Leandro Roza Livramento and Eugen Radu and Yakov Shnir},
title = {Solitons in the {Gauged} {Skyrme{\textendash}Maxwell} {Model}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2023},
volume = {19},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a41/}
}
Leandro Roza Livramento; Eugen Radu; Yakov Shnir. Solitons in the Gauged Skyrme–Maxwell Model. Symmetry, integrability and geometry: methods and applications, Tome 19 (2023). http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a41/
[1] Adam C., Naya C., Sanchez-Guillen J., Wereszczynski A., “Bogomol'nyi–Prasad–Sommerfield Skyrme model and nuclear binding energies”, Phys. Rev. Lett., 111 (2013), 232501, 5 pp., arXiv: 1312.2960 | DOI
[2] Adam C., Sanchez-Guillen J., Wereszczynski A., “A Skyrme-type proposal for baryonic matter”, Phys. Lett. B, 691 (2010), 105–110, arXiv: 1001.4544 | DOI
[3] Adam C., Wereszczynski A., “Topological energy bounds in generalized Skyrme models”, Phys. Rev. D, 89 (2014), 065010, 15 pp., arXiv: 1311.2939 | DOI
[4] Adam C., Wereszczynski A., “Gauged BPS baby Skyrmions with quantized magnetic flux”, Phys. Rev. D, 95 (2017), 116006, 10 pp., arXiv: 1703.09672 | DOI | MR
[5] Adkins G., Nappi C.R., “Stabilization of chiral solitons via vector mesons”, Phys. Lett. B, 137 (1984), 251–256 | DOI
[6] Adkins G.S., Nappi C.R., “The Skyrme model with pion masses”, Nuclear Phys. B, 233 (1984), 109–115 | DOI
[7] Adkins G.S., Nappi C.R., Witten E., “Static properties of nucleons in the Skyrme model”, Nuclear Phys. B, 228 (1983), 552–566 | DOI
[8] Atiyah M.F., Manton N.S., “Skyrmions from instantons”, Phys. Lett. B, 222 (1989), 438–442 | DOI | MR
[9] Battye R., Sutcliffe P., “Skyrmions and the pion mass”, Nuclear Phys. B, 705 (2005), 384–400, arXiv: hep-ph/0410157 | DOI
[10] Battye R.A., Haberichter M., “Isospinning baby Skyrmion solutions”, Phys. Rev. D, 88 (2013), 125016, 14 pp., arXiv: 1309.3907 | DOI
[11] Battye R.A., Haberichter M., Krusch S., “Classically isospinning Skyrmion solutions”, Phys. Rev. D, 90 (2014), 125035, 32 pp., arXiv: 1407.3264 | DOI
[12] Battye R.A., Krusch S., Sutcliffe P.M., “Spinning skyrmions and the Skyrme parameters”, Phys. Lett. B, 626 (2005), 120–126, arXiv: hep-th/0507279 | DOI
[13] Battye R.A., Manton N.S., Sutcliffe P.M., “Skyrmions and the $\alpha$-particle model of nuclei”, Proc. R. Soc. Lond. Ser. A, 463 (2007), 261–279, arXiv: hep-th/0605284 | DOI | MR | Zbl
[14] Battye R.A., Sutcliffe P.M., “Skyrmions with massive pions”, Phys. Rev. C, 73 (2006), 055205, 4 pp., arXiv: hep-th/0602220 | DOI
[15] Bogolubskaya A.A., Bogolubsky I.L., “Stationary topological solitons in the two-dimensional anisotropic Heisenberg model with a Skyrme term”, Phys. Lett. A, 136 (1989), 485–488 | DOI | MR
[16] Bogolubskaya A.A., Bogolubsky I.L., “On stationary topological solitons in a two-dimensional anisotropic Heisenberg model”, Lett. Math. Phys., 19 (1990), 171–177 | DOI | MR | Zbl
[17] Brihaye Y., Grigoriev D.Y., Rubakov V.A., Tchrakian D.H., “Extended model for monopole catalysis of nucleon decay”, Phys. Rev. D, 67 (2003), 034004, 8 pp., arXiv: hep-th/0211215 | DOI
[18] Brihaye Y., Rubakov V., Chrakian D., Zimmerschied F., “A simplified model for monopole catalysis of nucleon decay”, Theoret. and Math. Phys., 128 (2001), 1140–1154, arXiv: hep-ph/0103228 | DOI | Zbl
[19] Brown G.E., Rho M. (eds), The multifaceted skyrmion, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2010 | DOI | MR | Zbl
[20] Callan Jr. C.G., “Disappearing dyons”, Phys. Rev. D, 25 (1982), 2141–2146 | DOI
[21] Callan Jr. C.G., Witten E., “Monopole catalysis of skyrmion decay”, Nuclear Phys. B, 239 (1984), 161–176 | DOI | MR
[22] Casana R., Santos A.C., Farias C.F., Mota A.L., “Self-dual solitons in a Maxwell–Chern–Simons baby Skyrme model”, Phys. Rev. D, 101 (2020), 045018, 12 pp., arXiv: 1910.02362 | DOI | MR
[23] Cork J., Harland D., Winyard T., “A model for gauged skyrmions with low binding energies”, J. Phys. A, 55 (2022), 015204, 37 pp., arXiv: 2109.06886 | DOI | MR | Zbl
[24] Dupuis E., Haberichter M., MacKenzie R., Paranjape M.B., Yajnik U.A., “Vacuum decay induced by false Skyrmions”, Phys. Rev. D, 99 (2019), 016016, 12 pp., arXiv: 1805.08038 | DOI
[25] Durgut M., Pak N., “Neutron-proton mass difference in the Skyrme model”, Phys. Lett. B, 159 (1985), 357–359 | DOI
[26] Ebrahim A., Savci M., “Electromagnetic neutron-proton mass difference in the Skyrme model”, Phys. Lett. B, 189 (1987), 343–346 | DOI
[27] Ferreira L., Livramento L., “A false vacuum Skyrme model for nuclear matter”, J. Phys. G, 49 (2022), 115102, 34 pp., arXiv: 2106.13335 | DOI
[28] Ferreira L., Shnir Y., “Exact self-dual Skyrmions”, Phys. Lett. B, 772 (2017), 621–627, arXiv: 1704.04807 | DOI | Zbl
[29] Ferreira L.A., “Exact self-duality in a modified Skyrme model”, J. High Energy Phys., 2017:7 (2017), 039, 13 pp., arXiv: 1705.01824 | DOI | MR
[30] Floratos I., Piette B., “Multiskyrmion solutions for the sixth order Skyrme model”, Phys. Rev. D, 64 (2001), 045009, 14 pp., arXiv: hep-th/0103126 | DOI | MR
[31] Forkel H., Jackson A.D., Weiss C., “Skyrmions with vector mesons: stability and the vector limit”, Nuclear Phys. A, 526 (1991), 453–478 | DOI
[32] Gladikowski J., Piette B.M.A.G., Schroers B.J., “Skyrme–Maxwell solitons in ($2+1$)-dimensions”, Phys. Rev. D, 53 (1996), 844–851, arXiv: hep-th/9506099 | DOI
[33] Gudnason S.B., “Loosening up the Skyrme model”, Phys. Rev. D, 93 (2016), 065048, 19 pp., arXiv: 1601.05024 | DOI | MR
[34] Gudnason S.B., Nitta M., “Fractional Skyrmions and their molecules”, Phys. Rev. D, 91 (2015), 085040, 22 pp., arXiv: 1502.06596 | DOI | MR
[35] Gudnason S.B., Nitta M., “Modifying the pion mass in the loosely bound Skyrme model”, Phys. Rev. D, 94 (2016), 065018, 13 pp., arXiv: 1606.02981 | DOI | MR
[36] Gudnason S.B., Nitta M., “Skyrmions confined as beads on a vortex ring”, Phys. Rev. D, 94 (2016), 025008, 22 pp., arXiv: 1606.00336 | DOI | MR
[37] Gudnason S.B., Nitta M., “A higher-order Skyrme model”, J. High Energy Phys., 2017:9 (2017), 028, 42 pp., arXiv: 1705.03438 | DOI | MR
[38] Gudnason S.B., Speight J.M., “Realistic classical binding energies in the $\omega$-{S}kyrme model”, J. High Energy Phys., 2020:7 (2020), 184, 41 pp., arXiv: 2004.12862 | DOI | MR | Zbl
[39] Halavanau A., Shnir Y., “Isorotating baby Skyrmions”, Phys. Rev. D, 88 (2013), 085028, 8 pp., arXiv: 1309.4318 | DOI
[40] Harland D., Jäykkä J., Shnir Y., Speight M., “Isospinning hopfions”, J. Phys. A, 46 (2013), 225402, 18 pp., arXiv: 1301.2923 | DOI | MR | Zbl
[41] Ioannidou T., Kleihaus B., Kunz J., “Spinning gravitating skyrmions”, Phys. Lett. B, 643 (2006), 213–220, arXiv: gr-qc/0608110 | DOI | MR | Zbl
[42] Jackson A., Jackson A.D., Goldhaber A.S., Brown G.E., Castillejo L.C., “A modified Skyrmion”, Phys. Lett. B, 154 (1985), 101–106 | DOI
[43] Jain P., Johnson R., Park N.W., Schechter J., Weigel H., “Neutron-proton mass-splitting puzzle in Skyrme and chiral quark models”, Phys. Rev. D, 40 (1989), 855–865 | DOI
[44] Kaelbermann G., “Proton-neutron mass difference in the Skyrme model”, Phys. Rev. C, 34 (1986), 2341–2343 | DOI
[45] Kleihaus B., Tchrakian D.H., Zimmerschied F., “Monopole skyrmions”, J. Math. Phys., 41 (2000), 816–834, arXiv: hep-th/9907035 | DOI | MR | Zbl
[46] Kopeliovich V.B., Piette B., Zakrzewski W.J., “Mass terms in the Skyrme model”, Phys. Rev. D, 73 (2006), 014006, 15 pp. | DOI
[47] Krusch S., Sutcliffe P., “Sphalerons in the Skyrme model”, J. Phys. A, 37 (2004), 9037–9050, arXiv: hep-th/0407002 | DOI | MR | Zbl
[48] Leese R.A., Peyrard M., Zakrzewski W.J., “Soliton scatterings in some relativistic models in $(2+1)$ dimensions”, Nonlinearity, 3 (1990), 773–807 | DOI | MR | Zbl
[49] Livramento L.R., Shnir Y., “False vacuum Skyrmions revisited”, Phys. Rev. D, 105 (2022), 125019, 13 pp., arXiv: 2204.13079 | DOI | MR
[50] Manton N., Skyrmions – a theory of nuclei, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2022 | DOI
[51] Manton N., Sutcliffe P., Topological solitons, Cambridge Monogr. Math. Phys., Cambridge University Press, Cambridge, 2004 | DOI | MR | Zbl
[52] Marleau L., “Modifying the Skyrme model: pion mass and higher derivatives”, Phys. Rev. D, 43 (1991), 885–890 | DOI
[53] Marleau L., “All-orders Skyrmions”, Phys. Rev. D, 45 (1992), 1776–1781 | DOI | MR
[54] Navarro-Lérida F., Radu E., Tchrakian D.H., “On the topological charge of ${\rm SO}(2)$ gauged Skyrmions in $2+1$ and $3+1$ dimensions”, Phys. Lett. B, 791 (2019), 287–292, arXiv: 1811.09535 | DOI | MR | Zbl
[55] Navarro-Lérida F., Tchrakian D.H., “Vortices of ${\rm SO}(2)$ gauged Skyrmions in $2+1$ dimensions”, Phys. Rev. D, 99 (2019), 045007, 16 pp., arXiv: 1812.03147 | DOI | MR
[56] Naya C., Sutcliffe P., “Skyrmions and clustering in light nuclei”, Phys. Rev. Lett., 121 (2018), 232002, 5 pp., arXiv: 1811.02064 | DOI
[57] Naya C., Sutcliffe P., “Skyrmions in models with pions and rho mesons”, J. High Energy Phys., 2018:5 (2018), 174, 14 pp., arXiv: 1803.06098 | DOI | MR
[58] Piette B.M.A.G., Schroers B.J., Zakrzewski W.J., “Dynamics of baby skyrmions”, Nuclear Phys. B, 439 (1995), 205–235, arXiv: hep-ph/9410256 | DOI | MR | Zbl
[59] Piette B.M.A.G., Tchrakian D.H., “Static solutions in the ${\rm U}(1)$ gauged Skyrme model”, Phys. Rev. D, 62 (2000), 025020, 10 pp., arXiv: hep-th/9709189 | DOI | MR
[60] Radu E., Tchrakian D.H., “Spinning ${\rm U}(1)$ gauged Skyrmions”, Phys. Lett. B, 632 (2006), 109–113, arXiv: hep-th/0509014 | DOI
[61] Rubakov V.A., “Superheavy magnetic monopoles and proton decay”, JETP Lett., 33 (1981), 644–646
[62] Sakai T., Sugimoto S., “Low energy hadron physics in holographic QCD”, Prog. Theor. Phys., 113 (2005), 843–882, arXiv: hep-th/0412141 | DOI | MR | Zbl
[63] Samoilenka A., Shnir Y., “Gauged multisoliton baby Skyrme model”, Phys. Rev. D, 93 (2016), 065018, 9 pp., arXiv: 1512.06280 | DOI | MR
[64] Samoilenka A., Shnir Y., “Gauged baby Skyrme model with a Chern–Simons term”, Phys. Rev. D, 95 (2017), 045002, 14 pp., arXiv: 1610.01300 | DOI | MR
[65] Samoilenka A., Shnir Y., “Magnetic Hopfions in the Faddeev–Skyrme–Maxwell model”, Phys. Rev. D, 97 (2018), 125014, 13 pp., arXiv: 1806.00604 | DOI
[66] Schechter J., Weigel H., The Skyrme model for baryons, arXiv: hep-ph/9907554
[67] Schönauer W., Weiß R., “Efficient vectorizable PDE solvers”, J. Comput. Appl. Math., 27 (1989), 279–297 | DOI | Zbl
[68] Schroers B.J., “Bogomolny solitons in a gauged ${\rm O}(3)$ sigma model”, Phys. Lett. B, 356 (1995), 291–296, arXiv: hep-th/9506004 | DOI | MR
[69] Schwesinger B., Weigel H., “Vector mesons versus higher order terms in the Skyrme model approach to baryon resonances”, Nuclear Phys. A, 465 (1987), 733–742 | DOI | MR
[70] Shnir Y., “Fractional non-topological quantization of the magnetic fluxes in the ${\rm U}(1)$ gauged planar Skyrme model”, Phys. Part. Nuclear Lett., 12 (2015), 469–475 | DOI
[71] Shnir Y., Topological and non-topological solitons in scalar field theories, Cambridge Monogr. Math. Phys., Cambridge University Press, Cambridge, 2018 | DOI | MR | Zbl
[72] Shnir Y., Tchrakian D.H., “Skyrmion-anti-Skyrmion chains”, J. Phys. A, 43 (2010), 025401, 11 pp., arXiv: 0906.5583 | DOI | MR | Zbl
[73] Shnir Y., Zhilin G., “Gauged Hopfions”, Phys. Rev. D, 89 (2014), 105010, 8 pp., arXiv: 1404.4867 | DOI
[74] Skyrme T.H.R., “A non-linear field theory”, Proc. Roy. Soc. London Ser. A, 260 (1961), 127–138 | DOI | MR | Zbl
[75] Skyrme T.H.R., “A unified field theory of mesons and baryons”, Nuclear Phys. B, 31 (1962), 556–569 | DOI | MR
[76] Speight J.M., “A simple mass-splitting mechanism in the Skyrme model”, Phys. Rev. B, 781 (2018), 455–458, arXiv: 1803.11216 | DOI
[77] Sutcliffe P., “Skyrmions, instantons and holography”, J. High Energy Phys., 2010:8 (2010), 019, 25 pp., arXiv: 1003.0023 | DOI | MR | Zbl
[78] Sutcliffe P., “Skyrmions in a truncated BPS theory”, J. High Energy Phys., 2011:4 (2011), 045, 13 pp., arXiv: 1101.2402 | DOI | MR | Zbl
[79] Sutcliffe P., “Holographic skyrmions”, Modern Phys. Lett. B, 29 (2015), 1540051, 37 pp., arXiv: 1540051 | DOI | MR
[80] Sutcliffe P., A Skyrme model with novel chiral symmetry breaking, arXiv: 2301.03021
[81] Witten E., “Global aspects of current algebra”, Nuclear Phys. B, 223 (1983), 422–432 | DOI | MR
[82] Witten E., “Current algebra, baryons, and quark confinement”, Nuclear Phys. B, 223 (1983), 433–444 | DOI | MR
[83] Yabu H., Schwesinger B., Holzwarth G., “The intermediate range attraction of the nucleon-nucleon force in a Skyrme model with explicit $\sigma$ mesons”, Phys. Lett. B, 224 (1989), 25–28 | DOI | MR
[84] Zahed I., Brown G.E., “The Skyrme model”, Phys. Rep., 142 (1986), 1–102 | DOI | MR