Solitons in the Gauged Skyrme–Maxwell Model
Symmetry, integrability and geometry: methods and applications, Tome 19 (2023) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider soliton solutions of the ${\rm U}(1)$ gauged Skyrme model with the pion mass term. The domain of existence of gauged Skyrmions is restricted from above by the value of the pion mass. Concentrating on the solutions of topological degree one, we find that coupling to the electromagnetic field breaks the symmetry of the configurations, the Skyrmions carrying both an electric charge and a magnetic flux, with an induced dipole magnetic moment. The Skyrmions also possess an angular momentum, which is quantized in the units of the electric charge. The mass of the gauged Skyrmions monotonically decreases with increase of the gauge coupling.
Keywords: Skyrme–Maxwell model, gauged Skyrmions, topological solitons
Mots-clés : Skyrmions.
@article{SIGMA_2023_19_a41,
     author = {Leandro Roza Livramento and Eugen Radu and Yakov Shnir},
     title = {Solitons in the {Gauged} {Skyrme{\textendash}Maxwell} {Model}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2023},
     volume = {19},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a41/}
}
TY  - JOUR
AU  - Leandro Roza Livramento
AU  - Eugen Radu
AU  - Yakov Shnir
TI  - Solitons in the Gauged Skyrme–Maxwell Model
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2023
VL  - 19
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a41/
LA  - en
ID  - SIGMA_2023_19_a41
ER  - 
%0 Journal Article
%A Leandro Roza Livramento
%A Eugen Radu
%A Yakov Shnir
%T Solitons in the Gauged Skyrme–Maxwell Model
%J Symmetry, integrability and geometry: methods and applications
%D 2023
%V 19
%U http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a41/
%G en
%F SIGMA_2023_19_a41
Leandro Roza Livramento; Eugen Radu; Yakov Shnir. Solitons in the Gauged Skyrme–Maxwell Model. Symmetry, integrability and geometry: methods and applications, Tome 19 (2023). http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a41/

[1] Adam C., Naya C., Sanchez-Guillen J., Wereszczynski A., “Bogomol'nyi–Prasad–Sommerfield Skyrme model and nuclear binding energies”, Phys. Rev. Lett., 111 (2013), 232501, 5 pp., arXiv: 1312.2960 | DOI

[2] Adam C., Sanchez-Guillen J., Wereszczynski A., “A Skyrme-type proposal for baryonic matter”, Phys. Lett. B, 691 (2010), 105–110, arXiv: 1001.4544 | DOI

[3] Adam C., Wereszczynski A., “Topological energy bounds in generalized Skyrme models”, Phys. Rev. D, 89 (2014), 065010, 15 pp., arXiv: 1311.2939 | DOI

[4] Adam C., Wereszczynski A., “Gauged BPS baby Skyrmions with quantized magnetic flux”, Phys. Rev. D, 95 (2017), 116006, 10 pp., arXiv: 1703.09672 | DOI | MR

[5] Adkins G., Nappi C.R., “Stabilization of chiral solitons via vector mesons”, Phys. Lett. B, 137 (1984), 251–256 | DOI

[6] Adkins G.S., Nappi C.R., “The Skyrme model with pion masses”, Nuclear Phys. B, 233 (1984), 109–115 | DOI

[7] Adkins G.S., Nappi C.R., Witten E., “Static properties of nucleons in the Skyrme model”, Nuclear Phys. B, 228 (1983), 552–566 | DOI

[8] Atiyah M.F., Manton N.S., “Skyrmions from instantons”, Phys. Lett. B, 222 (1989), 438–442 | DOI | MR

[9] Battye R., Sutcliffe P., “Skyrmions and the pion mass”, Nuclear Phys. B, 705 (2005), 384–400, arXiv: hep-ph/0410157 | DOI

[10] Battye R.A., Haberichter M., “Isospinning baby Skyrmion solutions”, Phys. Rev. D, 88 (2013), 125016, 14 pp., arXiv: 1309.3907 | DOI

[11] Battye R.A., Haberichter M., Krusch S., “Classically isospinning Skyrmion solutions”, Phys. Rev. D, 90 (2014), 125035, 32 pp., arXiv: 1407.3264 | DOI

[12] Battye R.A., Krusch S., Sutcliffe P.M., “Spinning skyrmions and the Skyrme parameters”, Phys. Lett. B, 626 (2005), 120–126, arXiv: hep-th/0507279 | DOI

[13] Battye R.A., Manton N.S., Sutcliffe P.M., “Skyrmions and the $\alpha$-particle model of nuclei”, Proc. R. Soc. Lond. Ser. A, 463 (2007), 261–279, arXiv: hep-th/0605284 | DOI | MR | Zbl

[14] Battye R.A., Sutcliffe P.M., “Skyrmions with massive pions”, Phys. Rev. C, 73 (2006), 055205, 4 pp., arXiv: hep-th/0602220 | DOI

[15] Bogolubskaya A.A., Bogolubsky I.L., “Stationary topological solitons in the two-dimensional anisotropic Heisenberg model with a Skyrme term”, Phys. Lett. A, 136 (1989), 485–488 | DOI | MR

[16] Bogolubskaya A.A., Bogolubsky I.L., “On stationary topological solitons in a two-dimensional anisotropic Heisenberg model”, Lett. Math. Phys., 19 (1990), 171–177 | DOI | MR | Zbl

[17] Brihaye Y., Grigoriev D.Y., Rubakov V.A., Tchrakian D.H., “Extended model for monopole catalysis of nucleon decay”, Phys. Rev. D, 67 (2003), 034004, 8 pp., arXiv: hep-th/0211215 | DOI

[18] Brihaye Y., Rubakov V., Chrakian D., Zimmerschied F., “A simplified model for monopole catalysis of nucleon decay”, Theoret. and Math. Phys., 128 (2001), 1140–1154, arXiv: hep-ph/0103228 | DOI | Zbl

[19] Brown G.E., Rho M. (eds), The multifaceted skyrmion, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2010 | DOI | MR | Zbl

[20] Callan Jr. C.G., “Disappearing dyons”, Phys. Rev. D, 25 (1982), 2141–2146 | DOI

[21] Callan Jr. C.G., Witten E., “Monopole catalysis of skyrmion decay”, Nuclear Phys. B, 239 (1984), 161–176 | DOI | MR

[22] Casana R., Santos A.C., Farias C.F., Mota A.L., “Self-dual solitons in a Maxwell–Chern–Simons baby Skyrme model”, Phys. Rev. D, 101 (2020), 045018, 12 pp., arXiv: 1910.02362 | DOI | MR

[23] Cork J., Harland D., Winyard T., “A model for gauged skyrmions with low binding energies”, J. Phys. A, 55 (2022), 015204, 37 pp., arXiv: 2109.06886 | DOI | MR | Zbl

[24] Dupuis E., Haberichter M., MacKenzie R., Paranjape M.B., Yajnik U.A., “Vacuum decay induced by false Skyrmions”, Phys. Rev. D, 99 (2019), 016016, 12 pp., arXiv: 1805.08038 | DOI

[25] Durgut M., Pak N., “Neutron-proton mass difference in the Skyrme model”, Phys. Lett. B, 159 (1985), 357–359 | DOI

[26] Ebrahim A., Savci M., “Electromagnetic neutron-proton mass difference in the Skyrme model”, Phys. Lett. B, 189 (1987), 343–346 | DOI

[27] Ferreira L., Livramento L., “A false vacuum Skyrme model for nuclear matter”, J. Phys. G, 49 (2022), 115102, 34 pp., arXiv: 2106.13335 | DOI

[28] Ferreira L., Shnir Y., “Exact self-dual Skyrmions”, Phys. Lett. B, 772 (2017), 621–627, arXiv: 1704.04807 | DOI | Zbl

[29] Ferreira L.A., “Exact self-duality in a modified Skyrme model”, J. High Energy Phys., 2017:7 (2017), 039, 13 pp., arXiv: 1705.01824 | DOI | MR

[30] Floratos I., Piette B., “Multiskyrmion solutions for the sixth order Skyrme model”, Phys. Rev. D, 64 (2001), 045009, 14 pp., arXiv: hep-th/0103126 | DOI | MR

[31] Forkel H., Jackson A.D., Weiss C., “Skyrmions with vector mesons: stability and the vector limit”, Nuclear Phys. A, 526 (1991), 453–478 | DOI

[32] Gladikowski J., Piette B.M.A.G., Schroers B.J., “Skyrme–Maxwell solitons in ($2+1$)-dimensions”, Phys. Rev. D, 53 (1996), 844–851, arXiv: hep-th/9506099 | DOI

[33] Gudnason S.B., “Loosening up the Skyrme model”, Phys. Rev. D, 93 (2016), 065048, 19 pp., arXiv: 1601.05024 | DOI | MR

[34] Gudnason S.B., Nitta M., “Fractional Skyrmions and their molecules”, Phys. Rev. D, 91 (2015), 085040, 22 pp., arXiv: 1502.06596 | DOI | MR

[35] Gudnason S.B., Nitta M., “Modifying the pion mass in the loosely bound Skyrme model”, Phys. Rev. D, 94 (2016), 065018, 13 pp., arXiv: 1606.02981 | DOI | MR

[36] Gudnason S.B., Nitta M., “Skyrmions confined as beads on a vortex ring”, Phys. Rev. D, 94 (2016), 025008, 22 pp., arXiv: 1606.00336 | DOI | MR

[37] Gudnason S.B., Nitta M., “A higher-order Skyrme model”, J. High Energy Phys., 2017:9 (2017), 028, 42 pp., arXiv: 1705.03438 | DOI | MR

[38] Gudnason S.B., Speight J.M., “Realistic classical binding energies in the $\omega$-{S}kyrme model”, J. High Energy Phys., 2020:7 (2020), 184, 41 pp., arXiv: 2004.12862 | DOI | MR | Zbl

[39] Halavanau A., Shnir Y., “Isorotating baby Skyrmions”, Phys. Rev. D, 88 (2013), 085028, 8 pp., arXiv: 1309.4318 | DOI

[40] Harland D., Jäykkä J., Shnir Y., Speight M., “Isospinning hopfions”, J. Phys. A, 46 (2013), 225402, 18 pp., arXiv: 1301.2923 | DOI | MR | Zbl

[41] Ioannidou T., Kleihaus B., Kunz J., “Spinning gravitating skyrmions”, Phys. Lett. B, 643 (2006), 213–220, arXiv: gr-qc/0608110 | DOI | MR | Zbl

[42] Jackson A., Jackson A.D., Goldhaber A.S., Brown G.E., Castillejo L.C., “A modified Skyrmion”, Phys. Lett. B, 154 (1985), 101–106 | DOI

[43] Jain P., Johnson R., Park N.W., Schechter J., Weigel H., “Neutron-proton mass-splitting puzzle in Skyrme and chiral quark models”, Phys. Rev. D, 40 (1989), 855–865 | DOI

[44] Kaelbermann G., “Proton-neutron mass difference in the Skyrme model”, Phys. Rev. C, 34 (1986), 2341–2343 | DOI

[45] Kleihaus B., Tchrakian D.H., Zimmerschied F., “Monopole skyrmions”, J. Math. Phys., 41 (2000), 816–834, arXiv: hep-th/9907035 | DOI | MR | Zbl

[46] Kopeliovich V.B., Piette B., Zakrzewski W.J., “Mass terms in the Skyrme model”, Phys. Rev. D, 73 (2006), 014006, 15 pp. | DOI

[47] Krusch S., Sutcliffe P., “Sphalerons in the Skyrme model”, J. Phys. A, 37 (2004), 9037–9050, arXiv: hep-th/0407002 | DOI | MR | Zbl

[48] Leese R.A., Peyrard M., Zakrzewski W.J., “Soliton scatterings in some relativistic models in $(2+1)$ dimensions”, Nonlinearity, 3 (1990), 773–807 | DOI | MR | Zbl

[49] Livramento L.R., Shnir Y., “False vacuum Skyrmions revisited”, Phys. Rev. D, 105 (2022), 125019, 13 pp., arXiv: 2204.13079 | DOI | MR

[50] Manton N., Skyrmions – a theory of nuclei, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2022 | DOI

[51] Manton N., Sutcliffe P., Topological solitons, Cambridge Monogr. Math. Phys., Cambridge University Press, Cambridge, 2004 | DOI | MR | Zbl

[52] Marleau L., “Modifying the Skyrme model: pion mass and higher derivatives”, Phys. Rev. D, 43 (1991), 885–890 | DOI

[53] Marleau L., “All-orders Skyrmions”, Phys. Rev. D, 45 (1992), 1776–1781 | DOI | MR

[54] Navarro-Lérida F., Radu E., Tchrakian D.H., “On the topological charge of ${\rm SO}(2)$ gauged Skyrmions in $2+1$ and $3+1$ dimensions”, Phys. Lett. B, 791 (2019), 287–292, arXiv: 1811.09535 | DOI | MR | Zbl

[55] Navarro-Lérida F., Tchrakian D.H., “Vortices of ${\rm SO}(2)$ gauged Skyrmions in $2+1$ dimensions”, Phys. Rev. D, 99 (2019), 045007, 16 pp., arXiv: 1812.03147 | DOI | MR

[56] Naya C., Sutcliffe P., “Skyrmions and clustering in light nuclei”, Phys. Rev. Lett., 121 (2018), 232002, 5 pp., arXiv: 1811.02064 | DOI

[57] Naya C., Sutcliffe P., “Skyrmions in models with pions and rho mesons”, J. High Energy Phys., 2018:5 (2018), 174, 14 pp., arXiv: 1803.06098 | DOI | MR

[58] Piette B.M.A.G., Schroers B.J., Zakrzewski W.J., “Dynamics of baby skyrmions”, Nuclear Phys. B, 439 (1995), 205–235, arXiv: hep-ph/9410256 | DOI | MR | Zbl

[59] Piette B.M.A.G., Tchrakian D.H., “Static solutions in the ${\rm U}(1)$ gauged Skyrme model”, Phys. Rev. D, 62 (2000), 025020, 10 pp., arXiv: hep-th/9709189 | DOI | MR

[60] Radu E., Tchrakian D.H., “Spinning ${\rm U}(1)$ gauged Skyrmions”, Phys. Lett. B, 632 (2006), 109–113, arXiv: hep-th/0509014 | DOI

[61] Rubakov V.A., “Superheavy magnetic monopoles and proton decay”, JETP Lett., 33 (1981), 644–646

[62] Sakai T., Sugimoto S., “Low energy hadron physics in holographic QCD”, Prog. Theor. Phys., 113 (2005), 843–882, arXiv: hep-th/0412141 | DOI | MR | Zbl

[63] Samoilenka A., Shnir Y., “Gauged multisoliton baby Skyrme model”, Phys. Rev. D, 93 (2016), 065018, 9 pp., arXiv: 1512.06280 | DOI | MR

[64] Samoilenka A., Shnir Y., “Gauged baby Skyrme model with a Chern–Simons term”, Phys. Rev. D, 95 (2017), 045002, 14 pp., arXiv: 1610.01300 | DOI | MR

[65] Samoilenka A., Shnir Y., “Magnetic Hopfions in the Faddeev–Skyrme–Maxwell model”, Phys. Rev. D, 97 (2018), 125014, 13 pp., arXiv: 1806.00604 | DOI

[66] Schechter J., Weigel H., The Skyrme model for baryons, arXiv: hep-ph/9907554

[67] Schönauer W., Weiß R., “Efficient vectorizable PDE solvers”, J. Comput. Appl. Math., 27 (1989), 279–297 | DOI | Zbl

[68] Schroers B.J., “Bogomolny solitons in a gauged ${\rm O}(3)$ sigma model”, Phys. Lett. B, 356 (1995), 291–296, arXiv: hep-th/9506004 | DOI | MR

[69] Schwesinger B., Weigel H., “Vector mesons versus higher order terms in the Skyrme model approach to baryon resonances”, Nuclear Phys. A, 465 (1987), 733–742 | DOI | MR

[70] Shnir Y., “Fractional non-topological quantization of the magnetic fluxes in the ${\rm U}(1)$ gauged planar Skyrme model”, Phys. Part. Nuclear Lett., 12 (2015), 469–475 | DOI

[71] Shnir Y., Topological and non-topological solitons in scalar field theories, Cambridge Monogr. Math. Phys., Cambridge University Press, Cambridge, 2018 | DOI | MR | Zbl

[72] Shnir Y., Tchrakian D.H., “Skyrmion-anti-Skyrmion chains”, J. Phys. A, 43 (2010), 025401, 11 pp., arXiv: 0906.5583 | DOI | MR | Zbl

[73] Shnir Y., Zhilin G., “Gauged Hopfions”, Phys. Rev. D, 89 (2014), 105010, 8 pp., arXiv: 1404.4867 | DOI

[74] Skyrme T.H.R., “A non-linear field theory”, Proc. Roy. Soc. London Ser. A, 260 (1961), 127–138 | DOI | MR | Zbl

[75] Skyrme T.H.R., “A unified field theory of mesons and baryons”, Nuclear Phys. B, 31 (1962), 556–569 | DOI | MR

[76] Speight J.M., “A simple mass-splitting mechanism in the Skyrme model”, Phys. Rev. B, 781 (2018), 455–458, arXiv: 1803.11216 | DOI

[77] Sutcliffe P., “Skyrmions, instantons and holography”, J. High Energy Phys., 2010:8 (2010), 019, 25 pp., arXiv: 1003.0023 | DOI | MR | Zbl

[78] Sutcliffe P., “Skyrmions in a truncated BPS theory”, J. High Energy Phys., 2011:4 (2011), 045, 13 pp., arXiv: 1101.2402 | DOI | MR | Zbl

[79] Sutcliffe P., “Holographic skyrmions”, Modern Phys. Lett. B, 29 (2015), 1540051, 37 pp., arXiv: 1540051 | DOI | MR

[80] Sutcliffe P., A Skyrme model with novel chiral symmetry breaking, arXiv: 2301.03021

[81] Witten E., “Global aspects of current algebra”, Nuclear Phys. B, 223 (1983), 422–432 | DOI | MR

[82] Witten E., “Current algebra, baryons, and quark confinement”, Nuclear Phys. B, 223 (1983), 433–444 | DOI | MR

[83] Yabu H., Schwesinger B., Holzwarth G., “The intermediate range attraction of the nucleon-nucleon force in a Skyrme model with explicit $\sigma$ mesons”, Phys. Lett. B, 224 (1989), 25–28 | DOI | MR

[84] Zahed I., Brown G.E., “The Skyrme model”, Phys. Rep., 142 (1986), 1–102 | DOI | MR