On Asymptotically Locally Hyperbolic Metrics with Negative Mass
Symmetry, integrability and geometry: methods and applications, Tome 19 (2023) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We construct families of asymptotically locally hyperbolic Riemannian metrics with constant scalar curvature (i.e., time symmetric vacuum general relativistic initial data sets with negative cosmological constant), with prescribed topology of apparent horizons and of the conformal boundary at infinity, and with controlled mass. In particular we obtain new classes of solutions with negative mass.
Keywords: scalar curvature, asymptotically hyperbolic manifolds, negative mass.
@article{SIGMA_2023_19_a4,
     author = {Piotr T. Chrusciel and Erwann Delay},
     title = {On {Asymptotically} {Locally} {Hyperbolic} {Metrics} with {Negative} {Mass}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2023},
     volume = {19},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a4/}
}
TY  - JOUR
AU  - Piotr T. Chrusciel
AU  - Erwann Delay
TI  - On Asymptotically Locally Hyperbolic Metrics with Negative Mass
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2023
VL  - 19
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a4/
LA  - en
ID  - SIGMA_2023_19_a4
ER  - 
%0 Journal Article
%A Piotr T. Chrusciel
%A Erwann Delay
%T On Asymptotically Locally Hyperbolic Metrics with Negative Mass
%J Symmetry, integrability and geometry: methods and applications
%D 2023
%V 19
%U http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a4/
%G en
%F SIGMA_2023_19_a4
Piotr T. Chrusciel; Erwann Delay. On Asymptotically Locally Hyperbolic Metrics with Negative Mass. Symmetry, integrability and geometry: methods and applications, Tome 19 (2023). http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a4/

[1] Barzegar H., Chruściel P.T., Hörzinger M., “Energy in higher-dimensional spacetimes”, Phys. Rev. D, 96 (2017), 124002, 25 pp., arXiv: 1708.03122 | DOI

[2] Birmingham D., “Topological black holes in anti-de Sitter space”, Classical Quantum Gravity, 16 (1999), 1197–1205, arXiv: hep-th/9808032 | DOI

[3] Chruściel P.T., Geometry of black holes, Internat. Ser. Monogr. Phys., 169, Oxford University Press, Oxford, 2020 | DOI

[4] Chruściel P.T., Delay E., “Exotic hyperbolic gluings”, J. Differential Geom., 108 (2018), 243–293, arXiv: 1511.07858 | DOI

[5] Chruściel P.T., Delay E., The hyperbolic positive energy theorem, arXiv: 1901.05263

[6] Chruściel P.T., Delay E., Wutte R., Hyperbolic energy and Maskit gluings, arXiv: 2112.00095

[7] Galloway G.J., Schleich K., Witt D.M., Woolgar E., “Topological censorship and higher genus black holes”, Phys. Rev. D, 60 (1999), 104039, 11 pp., arXiv: gr-qc/9902061 | DOI

[8] Guillarmou C., Moroianu S., Rochon F., “Renormalized volume on the Teichmüller space of punctured surfaces”, Ann. Sc. Norm. Super. Pisa Cl. Sci., 17 (2017), 323–384, arXiv: 1504.04721 | DOI

[9] Herzlich M., “Computing asymptotic invariants with the Ricci tensor on asymptotically flat and asymptotically hyperbolic manifolds”, Ann. Henri Poincaré, 17 (2016), 3605–3617, arXiv: 1503.00508 | DOI

[10] Horowitz G.T., Myers R.C., “AdS-CFT correspondence and a new positive energy conjecture for general relativity”, Phys. Rev. D, 59 (1999), 026005, 12 pp., arXiv: hep-th/9808079 | DOI

[11] Isenberg J., Lee J.M., Stavrov Allen I., “Asymptotic gluing of asymptotically hyperbolic solutions to the Einstein constraint equations”, Ann. Henri Poincaré, 11 (2010), 881–927, arXiv: 0910.1875 | DOI

[12] Kottler F., “Über die physikalischen Grundlagen der Einsteinschen Gravitationstheorie”, Ann. Phys., 56 (1918), 401–462 | DOI

[13] Mazzeo R., Pacard F., “Maskit combinations of Poincaré–Einstein metrics”, Adv. Math., 204 (2006), 379–412, arXiv: math.DG/0211099 | DOI

[14] Mazzeo R., Taylor M., “Curvature and uniformization”, Israel J. Math., 130 (2002), 323–346, arXiv: math.DG/0105016 | DOI

[15] Rupflin M., “Hyperbolic metrics on surfaces with boundary”, J. Geom. Anal., 31 (2021), 3117–3136, arXiv: 1807.04464 | DOI

[16] Rupflin M., Topping P.M., Zhu M., “Asymptotics of the Teichmüller harmonic map flow”, Adv. Math., 244 (2013), 874–893, arXiv: 1209.3783 | DOI

[17] Zhang T., “Asymptotic properties of the hyperbolic metric on the sphere with three conical singularities”, Bull. Korean Math. Soc., 51 (2014), 1485–1502, arXiv: 1301.7272 | DOI