@article{SIGMA_2023_19_a4,
author = {Piotr T. Chrusciel and Erwann Delay},
title = {On {Asymptotically} {Locally} {Hyperbolic} {Metrics} with {Negative} {Mass}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2023},
volume = {19},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a4/}
}
Piotr T. Chrusciel; Erwann Delay. On Asymptotically Locally Hyperbolic Metrics with Negative Mass. Symmetry, integrability and geometry: methods and applications, Tome 19 (2023). http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a4/
[1] Barzegar H., Chruściel P.T., Hörzinger M., “Energy in higher-dimensional spacetimes”, Phys. Rev. D, 96 (2017), 124002, 25 pp., arXiv: 1708.03122 | DOI
[2] Birmingham D., “Topological black holes in anti-de Sitter space”, Classical Quantum Gravity, 16 (1999), 1197–1205, arXiv: hep-th/9808032 | DOI
[3] Chruściel P.T., Geometry of black holes, Internat. Ser. Monogr. Phys., 169, Oxford University Press, Oxford, 2020 | DOI
[4] Chruściel P.T., Delay E., “Exotic hyperbolic gluings”, J. Differential Geom., 108 (2018), 243–293, arXiv: 1511.07858 | DOI
[5] Chruściel P.T., Delay E., The hyperbolic positive energy theorem, arXiv: 1901.05263
[6] Chruściel P.T., Delay E., Wutte R., Hyperbolic energy and Maskit gluings, arXiv: 2112.00095
[7] Galloway G.J., Schleich K., Witt D.M., Woolgar E., “Topological censorship and higher genus black holes”, Phys. Rev. D, 60 (1999), 104039, 11 pp., arXiv: gr-qc/9902061 | DOI
[8] Guillarmou C., Moroianu S., Rochon F., “Renormalized volume on the Teichmüller space of punctured surfaces”, Ann. Sc. Norm. Super. Pisa Cl. Sci., 17 (2017), 323–384, arXiv: 1504.04721 | DOI
[9] Herzlich M., “Computing asymptotic invariants with the Ricci tensor on asymptotically flat and asymptotically hyperbolic manifolds”, Ann. Henri Poincaré, 17 (2016), 3605–3617, arXiv: 1503.00508 | DOI
[10] Horowitz G.T., Myers R.C., “AdS-CFT correspondence and a new positive energy conjecture for general relativity”, Phys. Rev. D, 59 (1999), 026005, 12 pp., arXiv: hep-th/9808079 | DOI
[11] Isenberg J., Lee J.M., Stavrov Allen I., “Asymptotic gluing of asymptotically hyperbolic solutions to the Einstein constraint equations”, Ann. Henri Poincaré, 11 (2010), 881–927, arXiv: 0910.1875 | DOI
[12] Kottler F., “Über die physikalischen Grundlagen der Einsteinschen Gravitationstheorie”, Ann. Phys., 56 (1918), 401–462 | DOI
[13] Mazzeo R., Pacard F., “Maskit combinations of Poincaré–Einstein metrics”, Adv. Math., 204 (2006), 379–412, arXiv: math.DG/0211099 | DOI
[14] Mazzeo R., Taylor M., “Curvature and uniformization”, Israel J. Math., 130 (2002), 323–346, arXiv: math.DG/0105016 | DOI
[15] Rupflin M., “Hyperbolic metrics on surfaces with boundary”, J. Geom. Anal., 31 (2021), 3117–3136, arXiv: 1807.04464 | DOI
[16] Rupflin M., Topping P.M., Zhu M., “Asymptotics of the Teichmüller harmonic map flow”, Adv. Math., 244 (2013), 874–893, arXiv: 1209.3783 | DOI
[17] Zhang T., “Asymptotic properties of the hyperbolic metric on the sphere with three conical singularities”, Bull. Korean Math. Soc., 51 (2014), 1485–1502, arXiv: 1301.7272 | DOI