Mots-clés : instanton moduli space
@article{SIGMA_2023_19_a38,
author = {Taro Kimura},
title = {Double {Quiver} {Gauge} {Theory} and {BPS/CFT} {Correspondence}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2023},
volume = {19},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a38/}
}
Taro Kimura. Double Quiver Gauge Theory and BPS/CFT Correspondence. Symmetry, integrability and geometry: methods and applications, Tome 19 (2023). http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a38/
[1] Agarwal P., Kim J., Kim S., Sciarappa A., “Wilson surfaces in M5-branes”, J. High Energy Phys., 2018:8 (2018), 119, 33 pp., arXiv: 1804.09932 | DOI | MR
[2] Alday L.F., Gaiotto D., Tachikawa Y., “Liouville correlation functions from four-dimensional gauge theories”, Lett. Math. Phys., 91 (2010), 167–197, arXiv: 0906.3219 | DOI | MR | Zbl
[3] Belavin V., Feigin B., “Super Liouville conformal blocks from $\mathcal{N}=2$ ${\rm SU}(2)$ quiver gauge theories”, J. High Energy Phys., 2011:7 (2011), 079, 17 pp., arXiv: 1105.5800 | DOI | MR | Zbl
[4] Benini F., Bonelli G., Poggi M., Tanzini A., “Elliptic non-Abelian Donaldson–Thomas invariants of $\mathbb{C}^3$”, J. High Energy Phys., 2019:7 (2019), 068, 41 pp., arXiv: 1807.08482 | DOI | MR
[5] Benini F., Eager R., Hori K., Tachikawa Y., “Elliptic genera of 2d $\mathcal{N}=2$ gauge theories”, Comm. Math. Phys., 333 (2015), 1241–1286, arXiv: 1308.4896 | DOI | MR | Zbl
[6] Billò M., Ferro L., Frau M., Gallot L., Lerda A., Pesando I., “Exotic instanton counting and heterotic/type ${\rm I}'$ duality”, J. High Energy Phys., 2009:7 (2009), 092, 44 pp., arXiv: 0905.4586 | DOI | MR
[7] Billò M., Frau M., Fucito F., Gallot L., Lerda A., Morales J.F., “On the ${\rm D}(-1)/{\rm D}7$-brane systems”, J. High Energy Phys., 2021:4 (2021), 096, 45 pp., arXiv: 2101.01732 | DOI | MR
[8] Billò M., Frau M., Gallot L., Lerda A., Pesando I., “Classical solutions for exotic instantons?”, J. High Energy Phys., 2009:3 (2009), 056, 39 pp., arXiv: 0901.1666 | DOI | MR
[9] Bonelli G., Fasola N., Tanzini A., Zenkevich Y., ADHM in 8d, coloured solid partitions and Donaldson–Thomas invariants on orbifolds, arXiv: 2011.02366
[10] Bonelli G., Maruyoshi K., Tanzini A., “Instantons on ALE spaces and super Liouville conformal field theories”, J. High Energy Phys., 2011:8 (2011), 056, 9 pp., arXiv: 1106.2505 | DOI | MR | Zbl
[11] Bonelli G., Maruyoshi K., Tanzini A., “Gauge theories on ALE space and super Liouville correlation functions”, Lett. Math. Phys., 101 (2012), 103–124, arXiv: 1107.4609 | DOI | MR | Zbl
[12] Borisov D., Joyce D., “Virtual fundamental classes for moduli spaces of sheaves on Calabi–Yau four-folds”, Geom. Topol., 21 (2017), 3231–3311, arXiv: 1504.00690 | DOI | MR | Zbl
[13] Cao Y., Kool M., “Zero-dimensional Donaldson–Thomas invariants of Calabi–Yau 4-folds”, Adv. Math., 338 (2018), 601–648, arXiv: 1712.07347 | DOI | MR | Zbl
[14] Cao Y., Kool M., Monavari S., “$K$-theoretic DT/PT correspondence for toric Calabi–Yau 4-folds”, Comm. Math. Phys., 396 (2022), 225–264, arXiv: 1906.07856 | DOI | MR
[15] Córdova C., Shao S.H., “An index formula for supersymmetric quantum mechanics,”, J. Singul., 15 (2016), 14–35, arXiv: 1406.7853 | DOI | MR
[16] Dijkgraaf R., Heidenreich B., Jefferson P., Vafa C., “Negative branes, supergroups and the signature of spacetime”, J. High Energy Phys., 2018:2 (2018), 050, 62 pp., arXiv: 1603.05665 | DOI | MR
[17] Douglas M., Moore G., D-branes, quivers, and ALE instantons, arXiv: hep-th/9603167
[18] Drukker N., Trancanelli D., “A supermatrix model for $\mathcal{N}=6$ super Chern–Simons-matter theory”, J. High Energy Phys., 2010:2 (2010), 058, 21 pp., arXiv: 0912.3006 | DOI | MR | Zbl
[19] Frenkel E., Reshetikhin N., “Deformations of $\mathcal{W}$-algebras associated to simple Lie algebras”, Comm. Math. Phys., 197 (1998), 1–32, arXiv: q-alg/9708006 | DOI | MR | Zbl
[20] Fucito F., Morales J.F., Poghossian R., “Multi-instanton calculus on ALE spaces”, Nuclear Phys. B, 703 (2004), 518–536, arXiv: hep-th/0406243 | DOI | MR | Zbl
[21] Fujii S., Minabe S., “A combinatorial study on quiver varieties”, SIGMA, 13 (2017), 052, 28 pp., arXiv: math.AG/0510455 | DOI | MR | Zbl
[22] Hanany A., Zaffaroni A., “Issues on orientifolds: on the brane construction of gauge theories with ${\rm SO}(2n)$ global symmetry”, J. High Energy Phys., 1999:7 (1999), 009, 40 pp., arXiv: hep-th/9903242 | DOI | MR
[23] Haouzi N., Kozçaz C., “Supersymmetric Wilson loops, instantons, and deformed $\mathcal{W}$-algebras”, Comm. Math. Phys., 393 (2022), 669–779, arXiv: 1907.03838 | DOI | MR | Zbl
[24] Hori K., Kim H., Yi P., “Witten index and wall crossing”, J. High Energy Phys., 2015:1 (2015), 124, 106 pp., arXiv: 1407.2567 | DOI | MR | Zbl
[25] Hwang C., Kim J., Kim S., Park J., “General instanton counting and 5d SCFT”, J. High Energy Phys., 2015:7 (2015), 063, 65 pp., arXiv: 1406.6793 | DOI | MR
[26] Kanno H., “Quiver matrix model of ADHM type and BPS state counting in diverse dimensions”, PTEP. Prog. Theor. Exp. Phys., 2020 (2020), 11B104, 22 pp., arXiv: 2004.05760 | DOI | MR
[27] Kapustin A., “$D_n$ quivers from branes”, J. High Energy Phys., 1998:12 (1998), 015, 17 pp., arXiv: hep-th/9806238 | DOI | MR
[28] Kazakov V.A., Kostov I.K., Nekrasov N., “D-particles, matrix integrals and KP hierarchy”, Nuclear Phys. B, 557 (1999), 413–442, arXiv: hep-th/9810035 | DOI | MR | Zbl
[29] Kim H.-C., “Line defects and 5d instanton partition functions”, J. High Energy Phys., 2016:3 (2016), 199, 16 pp., arXiv: 1601.06841 | DOI | MR
[30] Kimura T., “Matrix model from $\mathcal{N}=2$ orbifold partition function”, J. High Energy Phys., 2011:9 (2011), 015, 35 pp., arXiv: 1105.6091 | DOI | MR | Zbl
[31] Kimura T., “$\beta$-ensembles for toric orbifold partition function”, Prog. Theor. Phys., 127 (2012), 271–285, arXiv: 1109.0004 | DOI | Zbl
[32] Kimura T., “Integrating over quiver variety and BPS/CFT correspondence”, Lett. Math. Phys., 110 (2020), 1237–1255, arXiv: 1910.03247 | DOI | MR | Zbl
[33] Kimura T., Instanton counting, quantum geometry and algebra, Math. Phys. Stud., Springer, Cham, 2021, arXiv: 2012.11711 | DOI | MR | Zbl
[34] Kimura T., Pestun V., “Fractional quiver W-algebras”, Lett. Math. Phys., 108 (2018), 2425–2451, arXiv: 1705.04410 | DOI | MR | Zbl
[35] Kimura T., Pestun V., “Quiver elliptic W-algebras”, Lett. Math. Phys., 108 (2018), 1383–1405, arXiv: 1608.04651 | DOI | MR | Zbl
[36] Kimura T., Pestun V., “Quiver W-algebras”, Lett. Math. Phys., 108 (2018), 1351–1381, arXiv: 1512.08533 | DOI | MR | Zbl
[37] Kimura T., Pestun V., Super instanton counting and localization, arXiv: 1905.01513 | MR
[38] Kimura T., Pestun V., Fractionalization of quiver variety and $qq$-character, in preparation
[39] Kimura T., Zhu R.-D., “Web construction of $ABCDEFG$ and affine quiver gauge theories”, J. High Energy Phys., 2019:9 (2019), 025, 57 pp., arXiv: 1907.02382 | DOI | MR
[40] Kronheimer P.B., Nakajima H., “Yang–Mills instantons on ALE gravitational instantons”, Math. Ann., 288 (1990), 263–307 | DOI | MR | Zbl
[41] Losev A., Nekrasov N., Shatashvili S., “Issues in topological gauge theory”, Nuclear Phys. B, 534 (1998), 549–611, arXiv: hep-th/9711108 | DOI | MR | Zbl
[42] Losev A., Nekrassov N., Shatashvili S., “Testing Seiberg–Witten solution”, Strings, Branes and Dualities (Cargèse, 1997), NATO Adv. Sci. Inst. Ser. C: Math. Phys. Sci., 520, Kluwer Acad. Publ., Dordrecht, 1999, 359–372, arXiv: hep-th/9801061 | DOI | MR | Zbl
[43] Mariño M., Putrov P., “Exact results in ABJM theory from topological strings”, J. High Energy Phys., 2010:6 (2010), 011, 21 pp., arXiv: 0912.3074 | DOI | MR | Zbl
[44] Moore G., Nekrasov N., Shatashvili S., “Integrating over Higgs branches”, Comm. Math. Phys., 209 (2000), 97–121, arXiv: hep-th/9712241 | DOI | MR | Zbl
[45] Nakajima H., “Instantons on ALE spaces, quiver varieties, and Kac–Moody algebras”, Duke Math. J., 76 (1994), 365–416 | DOI | MR | Zbl
[46] Nakajima H., “Quiver varieties and Kac–Moody algebras”, Duke Math. J., 91 (1998), 515–560 | DOI | MR | Zbl
[47] Nakajima H., Weekes A., “Coulomb branches of quiver gauge theories with symmetrizers”, J. Eur. Math. Soc. (JEMS), 25 (2023), 203–230, arXiv: 1907.06552 | DOI | MR | Zbl
[48] Nekrasov N., “Seiberg–Witten prepotential from instanton counting”, Adv. Theor. Math. Phys., 7 (2003), 831–864, arXiv: hep-th/0206161 | DOI | MR | Zbl
[49] Nekrasov N., On the BPS/CFT correspondence, Lecture at the University of Amsterdam String Theory Group Seminar, 2004 | MR
[50] Nekrasov N., “BPS/CFT correspondence: non-perturbative Dyson–Schwinger equations and $qq$-characters”, J. High Energy Phys., 2016:3 (2016), 181, 70 pp., arXiv: 1512.05388 | DOI | MR | Zbl
[51] Nekrasov N., “BPS/CFT correspondence II: instantons at crossroads, moduli and compactness theorem”, Adv. Theor. Math. Phys., 21 (2017), 503–583, arXiv: 1608.07272 | DOI | MR | Zbl
[52] Nekrasov N., “BPS/CFT correspondence III: Gauge origami partition function and $qq$-characters”, Comm. Math. Phys., 358 (2018), 863–894, arXiv: 1701.00189 | DOI | MR | Zbl
[53] Nekrasov N., “Magnificent four”, Adv. Theor. Math. Phys., 24 (2020), 1171–1202, arXiv: 1712.08128 | DOI | MR
[54] Nekrasov N., Pestun V., Seiberg–Witten geometry of four dimensional $N=2$ quiver gauge theories, arXiv: 1211.2240
[55] Nekrasov N., Pestun V., Shatashvili S., “Quantum geometry and quiver gauge theories”, Comm. Math. Phys., 357 (2018), 519–567, arXiv: 1312.6689 | DOI | MR | Zbl
[56] Nekrasov N., Piazzalunga N., “Magnificent four with colors”, Comm. Math. Phys., 372 (2019), 573–597, arXiv: 1808.05206 | DOI | MR | Zbl
[57] Nieri F., Zenkevich Y., “Quiver ${\rm W}_{\epsilon_1,\epsilon_2}$ algebras of 4D $\mathcal{N}=2$ gauge theories”, J. Phys. A, 53 (2020), 275401, 43 pp., arXiv: 1912.09969 | DOI | MR
[58] Nishioka T., Tachikawa Y., “Central charges of para-Liouville and Toda theories from M-5-branes”, Phys. Rev. D, 84 (2011), 046009, 3 pp., arXiv: 1106.1172 | DOI
[59] Pomoni E., Yan W., Zhang X., “Tetrahedron instantons”, Comm. Math. Phys., 393 (2022), 781–838, arXiv: 2106.11611 | DOI | MR | Zbl
[60] Tong D., Wong K., “Instantons, Wilson lines, and D-branes”, Phys. Rev. D, 91 (2015), 026007, 8 pp., arXiv: 1410.8523 | DOI
[61] Wyllard N., “$A_{N-1}$ conformal Toda field theory correlation functions from conformal $\mathcal{N}=2$ ${\rm SU}(N)$ quiver gauge theories”, J. High Energy Phys., 2009:11 (2009), 002, 22 pp., arXiv: 0907.2189 | DOI | MR