Shifted Substitution in Non-Commutative Multivariate Power Series with a View Toward Free Probability
Symmetry, integrability and geometry: methods and applications, Tome 19 (2023) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study a particular group law on formal power series in non-commuting variables induced by their interpretation as linear forms on a suitable graded connected word Hopf algebra. This group law is left-linear and is therefore associated to a pre-Lie structure on formal power series. We study these structures and show how they can be used to recast in a group theoretic form various identities and transformations on formal power series that have been central in the context of non-commutative probability theory, in particular in Voiculescu's theory of free probability.
Keywords: non-commutative probability theory, non-commutative power series, combinatorial Hopf algebra, pre-Lie algebra.
Mots-clés : moments and cumulants
@article{SIGMA_2023_19_a37,
     author = {Kurusch Ebrahimi-Fard and Fr\'ed\'eric Patras and Nikolas Tapia and Lorenzo Zambotti},
     title = {Shifted {Substitution} in {Non-Commutative} {Multivariate} {Power} {Series} with a {View} {Toward} {Free} {Probability}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2023},
     volume = {19},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a37/}
}
TY  - JOUR
AU  - Kurusch Ebrahimi-Fard
AU  - Frédéric Patras
AU  - Nikolas Tapia
AU  - Lorenzo Zambotti
TI  - Shifted Substitution in Non-Commutative Multivariate Power Series with a View Toward Free Probability
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2023
VL  - 19
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a37/
LA  - en
ID  - SIGMA_2023_19_a37
ER  - 
%0 Journal Article
%A Kurusch Ebrahimi-Fard
%A Frédéric Patras
%A Nikolas Tapia
%A Lorenzo Zambotti
%T Shifted Substitution in Non-Commutative Multivariate Power Series with a View Toward Free Probability
%J Symmetry, integrability and geometry: methods and applications
%D 2023
%V 19
%U http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a37/
%G en
%F SIGMA_2023_19_a37
Kurusch Ebrahimi-Fard; Frédéric Patras; Nikolas Tapia; Lorenzo Zambotti. Shifted Substitution in Non-Commutative Multivariate Power Series with a View Toward Free Probability. Symmetry, integrability and geometry: methods and applications, Tome 19 (2023). http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a37/

[1] Anshelevich M., “Appell polynomials and their relatives”, Int. Math. Res. Not., 2004 (2004), 3469–3531, arXiv: math.CO/0311043 | DOI | MR | Zbl

[2] Anshelevich M., “Appell polynomials and their relatives. II Boolean theory”, Indiana Univ. Math. J., 58 (2009), 929–968, arXiv: 0712.4185 | DOI | MR | Zbl

[3] Anshelevich M., “Appell polynomials and their relatives. III Conditionally free theory”, Illinois J. Math., 53 (2009), 39–66, arXiv: 0803.4279 | DOI | MR | Zbl

[4] Anshelevich M., “Free evolution on algebras with two states”, J. Reine Angew. Math., 638 (2010), 75–101, arXiv: 0803.4280 | DOI | MR | Zbl

[5] Arizmendi O., Hasebe T., Lehner F., Vargas C., “Relations between cumulants in noncommutative probability”, Adv. Math., 282 (2015), 56–92, arXiv: 1408.2977 | DOI | MR | Zbl

[6] Baues H.J., “The double bar and cobar constructions”, Compositio Math., 43 (1981), 331–341 | MR | Zbl

[7] Brouder C., “Runge–Kutta methods and renormalization”, Eur. Phys. J. C, 12 (2000), 521–534, arXiv: hep-th/9904014 | DOI

[8] Butcher J.C., B-series. Algebraic analysis of numerical methods, Springer Ser. Comput. Math., 55, Springer, Cham, 2021 | DOI | MR

[9] Calaque D., Ebrahimi-Fard K., Manchon D., “Two interacting Hopf algebras of trees: a Hopf-algebraic approach to composition and substitution of B-series”, Adv. in Appl. Math., 47 (2011), 282–308, arXiv: 0806.2238 | DOI | MR | Zbl

[10] Cartier P., Patras F., Classical Hopf algebras and their applications, Algebr. Appl., 29, Springer, Cham, 2021 | DOI | MR

[11] Cayley A., “A theorem on trees”, Q. J. Math., 23 (1889), 376–378

[12] Chartier P., Hairer E., Vilmart G., “Algebraic structures of B-series”, Found. Comput. Math., 10 (2010), 407–427 | DOI | MR | Zbl

[13] Connes A., Kreimer D., “Hopf algebras, renormalization and noncommutative geometry”, Comm. Math. Phys., 199 (1998), 203–242, arXiv: hep-th/9808042 | DOI | MR | Zbl

[14] Ebrahimi-Fard K., Patras F., “Cumulants, free cumulants and half-shuffles”, Proc. A, 471 (2015), 20140843, 18 pp., arXiv: 1409.5664 | DOI | MR | Zbl

[15] Ebrahimi-Fard K., Patras F., “The splitting process in free probability theory”, Int. Math. Res. Not., 2016 (2016), 2647–2676, arXiv: 1502.02748 | DOI | MR | Zbl

[16] Ebrahimi-Fard K., Patras F., “Monotone, free, and boolean cumulants: a shuffle algebra approach”, Adv. Math., 328 (2018), 112–132, arXiv: 1701.06152 | DOI | MR | Zbl

[17] Ebrahimi-Fard K., Patras F., “Shuffle group laws: applications in free probability”, Proc. Lond. Math. Soc., 119 (2019), 814–840, arXiv: 1704.04942 | DOI | MR | Zbl

[18] Ebrahimi-Fard K., Patras F., “Quasi-shuffle algebras in non-commutative stochastic calculus”, Geometry and Invariance in Stochastic Dynamics, Springer Proc. Math. Stat., 378, Springer, Cham, 2021, 89–112, arXiv: 2004.06945 | DOI | MR | Zbl

[19] Ebrahimi-Fard K., Patras F., Tapia N., Zambotti L., “Hopf-algebraic deformations of products and Wick polynomials”, Int. Math. Res. Not., 2020 (2020), 10064–10099, arXiv: 1710.00735 | DOI | MR | Zbl

[20] Ebrahimi-Fard K., Patras F., Tapia N., Zambotti L., “Wick polynomials in noncommutative probability: a group-theoretical approach”, Canad. J. Math., 74 (2022), 1673–1699, arXiv: 2001.03808 | DOI | MR | Zbl

[21] Hairer E., Lubich C., Wanner G., Geometric numerical integration. Structure-preserving algorithms for ordinary differential equations, Springer Ser. Comput. Math., 31, 2nd ed., Springer, Berlin, 2006 | DOI | MR | Zbl

[22] Hasebe T., Saigo H., “Joint cumulants for natural independence”, Electron. Commun. Probab., 16 (2011), 491–506, arXiv: 1005.3900 | DOI | MR | Zbl

[23] Hasebe T., Saigo H., “The monotone cumulants”, Ann. Inst. Henri Poincaré Probab. Stat., 47 (2011), 1160–1170, arXiv: 0907.4896 | DOI | MR | Zbl

[24] Mingo J.A., Speicher R., Free probability and random matrices, Fields Inst. Monogr., 35, Springer, New York, 2017 | DOI | MR | Zbl

[25] Nica A., Speicher R., Lectures on the combinatorics of free probability, London Math. Soc. Lecture Note Ser., 335, Cambridge University Press, Cambridge, 2006 | DOI | MR | Zbl

[26] Voiculescu D., “Free probability theory: random matrices and von Neumann algebras”, Proceedings of the International Congress of Mathematicians (Zürich, 1994), v. 1, 2, Birkhäuser, Basel, 1995, 227–241 | DOI | MR | Zbl