@article{SIGMA_2023_19_a36,
author = {Yumi Arai and Kouichi Takemura},
title = {On $q${-Middle} {Convolution} and $q${-Hypergeometric} {Equations}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2023},
volume = {19},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a36/}
}
Yumi Arai; Kouichi Takemura. On $q$-Middle Convolution and $q$-Hypergeometric Equations. Symmetry, integrability and geometry: methods and applications, Tome 19 (2023). http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a36/
[1] Aomoto K., “On the 3 fundamental problems concerning $q$-basic hypergeometric functions ($q$-difference equations, asymptotic behaviours and connection problem)”, Proceedinds of Fifth Oka Symposium (March 18–19, 2006, Nara), Oka Mathematical Institute, Japan, 2006, 16 pp.
[2] Arai Y., $q$-deformation of middle convolution and its application to $q$-difference equations, Master's Thesis, Ochanomizu University, 2023
[3] Dettweiler M., Reiter S., “An algorithm of Katz and its application to the inverse Galois problem”, J. Symbolic Comput., 30 (2000), 761–798 | DOI | MR | Zbl
[4] Dettweiler M., Reiter S., “Middle convolution of Fuchsian systems and the construction of rigid differential systems”, J. Algebra, 318 (2007), 1–24 | DOI | MR | Zbl
[5] Fujii T., Special solutions of $q$-Heun equation by $q$-hypergeometric integral, Master's Thesis, Kobe University, 2022
[6] Fujii T., Nobukawa T., Hypergeometric solutions for variants of the $q$-hypergeometric equation, arXiv: 2207.12777
[7] Gasper G., Rahman M., Basic hypergeometric series, Encyclopedia Math. Appl., 96, 2nd ed., Cambridge University Press, Cambridge, 2004 | DOI | MR | Zbl
[8] Haraoka Y., Linear differential equations in the complex domain, Lecture Notes in Math., 2271, Springer, Cham, 2020 | DOI | MR | Zbl
[9] Hatano N., Matsunawa R., Sato T., Takemura K., “Variants of $q$-hypergeometric equation”, Funkcial. Ekvac., 65 (2022), 159–190, arXiv: 1910.12560 | DOI | MR
[10] Katz N.M., Rigid local systems, Ann. of Math. Stud., 139, Princeton University Press, Princeton, NJ, 1996 | DOI | MR | Zbl
[11] Matsunawa R., Sato T., Takemura K., “Variants of confluent $q$-hypergeometric equations”, Geometric and Harmonic Analysis on Homogeneous Spaces and Applications, Springer Proc. Math. Stat., 366, Springer, Cham, 2021, 161–180, arXiv: 2005.13223 | DOI | MR | Zbl
[12] Mimachi K., “Connection problem in holonomic $q$-difference system associated with a Jackson integral of Jordan–Pochhammer type”, Nagoya Math. J., 116 (1989), 149–161 | DOI | MR | Zbl
[13] Sakai H., Yamaguchi M., “Spectral types of linear $q$-difference equations and $q$-analog of middle convolution”, Int. Math. Res. Not., 2017 (2017), 1975–2013, arXiv: 1410.3674 | DOI | MR | Zbl
[14] Sasaki S., Takagi S., Takemura K., “$q$-middle convolution and $q$-Painlevé equation”, SIGMA, 18 (2022), 056, 21 pp., arXiv: 2201.03960 | DOI | MR
[15] Whittaker E., Watson G., A course of modern analysis, Cambridge Math. Lib., 4th ed., Cambridge University Press, New York, 1962 | DOI | MR | Zbl