From pp-Waves to Galilean Spacetimes
Symmetry, integrability and geometry: methods and applications, Tome 19 (2023) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We exhibit all spatially isotropic homogeneous Galilean spacetimes of dimension $(n+1) \geq 4$, including the novel torsional ones, as null reductions of homogeneous pp-wave spacetimes. We also show that the pp-waves are sourced by pure radiation fields and analyse their global properties.
Keywords: pp-waves, Galilean spacetimes, null reduction.
@article{SIGMA_2023_19_a34,
     author = {Jos\'e Figueroa-O'Farrill and Ross Grassie and Stefan Prohazka},
     title = {From {pp-Waves} to {Galilean} {Spacetimes}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2023},
     volume = {19},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a34/}
}
TY  - JOUR
AU  - José Figueroa-O'Farrill
AU  - Ross Grassie
AU  - Stefan Prohazka
TI  - From pp-Waves to Galilean Spacetimes
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2023
VL  - 19
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a34/
LA  - en
ID  - SIGMA_2023_19_a34
ER  - 
%0 Journal Article
%A José Figueroa-O'Farrill
%A Ross Grassie
%A Stefan Prohazka
%T From pp-Waves to Galilean Spacetimes
%J Symmetry, integrability and geometry: methods and applications
%D 2023
%V 19
%U http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a34/
%G en
%F SIGMA_2023_19_a34
José Figueroa-O'Farrill; Ross Grassie; Stefan Prohazka. From pp-Waves to Galilean Spacetimes. Symmetry, integrability and geometry: methods and applications, Tome 19 (2023). http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a34/

[1] Bacry H., Lévy-Leblond J.M., “Possible kinematics”, J. Math. Phys., 9 (1968), 1605–1614 | DOI | MR | Zbl

[2] Bekaert X., Morand K., “Connections and dynamical trajectories in generalised Newton–Cartan gravity I An intrinsic view”, J. Math. Phys., 57 (2016), 022507, 44 pp., arXiv: 1412.8212 | DOI | MR | Zbl

[3] Bekaert X., Morand K., “Connections and dynamical trajectories in generalised Newton–Cartan gravity. II An ambient perspective”, J. Math. Phys., 59 (2018), 072503, 41 pp., arXiv: 1505.03739 | DOI | MR | Zbl

[4] Bizoń P., Evnin O., Ficek F., “A nonrelativistic limit for AdS perturbations”, J. High Energy Phys., 2018:12 (2018), 113, arXiv: 1810.10574 | DOI | MR | Zbl

[5] Brinkmann H.W., “Einstein spaces which are mapped conformally on each other”, Math. Ann., 94 (1925), 119–145 | DOI | MR

[6] Christensen M.H., Hartong J., Obers N.A., Rollier B., “Torsional Newton–Cartan geometry and Lifshitz Holography”, Phys. Rev. D, 89 (2014), 061901, 5 pp., arXiv: 1311.4794 | DOI | MR

[7] Duval C., Burdet G., Künzle H.P., Perrin M., “Bargmann structures and Newton–Cartan theory”, Phys. Rev. D, 31 (1985), 1841–1853 | DOI | MR

[8] Ehlers J., Kundt W., “Exact solutions of the gravitational field equations”, Gravitation: An Introduction to Current Research, Wiley, New York, 1962, 49–101 | MR

[9] Figueroa-O'Farrill J., On the intrinsic torsion of spacetime structures, arXiv: 2009.01948

[10] Figueroa-O'Farrill J., Görmez C., Van den Bleeken D., “Particle dynamics on torsional Galilean spacetimes”, SciPost Phys., 14 (2023), 059, 32 pp., arXiv: 2208.07611 | DOI | MR

[11] Figueroa-O'Farrill J., Grassie R., Prohazka S., “Geometry and BMS Lie algebras of spatially isotropic homogeneous spacetimes”, J. High Energy Phys., 2019:8 (2019), 119, 92 pp., arXiv: 1905.00034 | DOI | MR | Zbl

[12] Figueroa-O'Farrill J., Grassie R., Prohazka S., “Lifshitz symmetry: Lie algebras, spacetimes and particles”, SciPost Phys., 14 (2023), 035, 42 pp., arXiv: 2206.11806 | DOI | MR

[13] Figueroa-O'Farrill J., Have E., Prohazka S., Salzer J., “Carrollian and celestial spaces at infinity”, J. High Energy Phys., 2022:9 (2022), 007, 52 pp., arXiv: 2112.03319 | DOI | MR

[14] Figueroa-O'Farrill J., Prohazka S., “Spatially isotropic homogeneous spacetimes”, J. High Energy Phys., 2019:1 (2019), 229, 78 pp., arXiv: 1809.01224 | DOI | MR | Zbl

[15] Figueroa-O'Farrill J.M., “Higher-dimensional kinematical Lie algebras via deformation theory”, J. Math. Phys., 59 (2018), 061702, 21 pp., arXiv: 1711.07363 | DOI | MR | Zbl

[16] Figueroa-O'Farrill J.M., “Kinematical {L}ie algebras via deformation theory”, J. Math. Phys., 59 (2018), 061701, 29 pp., arXiv: 1711.06111 | DOI | MR | Zbl

[17] Gibbons G.W., Patricot C.E., “Newton–Hooke spacetimes, Hpp-waves and the cosmological constant”, Classical Quantum Gravity, 20 (2003), 5225–5239, arXiv: hep-th/0308200 | DOI | MR | Zbl

[18] Julia B., Nicolai H., “Null-Killing vector-dimensional reduction and Galilean geometrodynamics”, Nuclear Phys. B, 439 (1995), 291–323, arXiv: hep-th/9412002 | DOI | MR | Zbl

[19] Künzle H.P., “Galilei and Lorentz structures on space-time: comparison of the corresponding geometry and physics”, Ann. Inst. H. Poincaré Sect. A, 17, 1972, 337–362 | MR

[20] Maxfield H., Zahraee Z., “Holographic solar systems and hydrogen atoms: non-relativistic physics in AdS and its CFT dual”, J. High Energy Phys., 2022:11 (2022), 093, 66 pp., arXiv: 2207.00606 | DOI | MR

[21] Stephani H., Kramer D., MacCallum M., Hoenselaers C., Herlt E., Exact solutions of Einstein's field equations, Cambridge Monogr. Math. Phys., Cambridge University Press, Cambridge, 2003 | DOI | MR

[22] Susskind L., “De Sitter holography: fluctuations, anomalous symmetry, and wormholes”, Universe, 7 (2021), 464, arXiv: 2106.03964 | DOI