Mots-clés : solitons
@article{SIGMA_2023_19_a33,
author = {Chris Halcrow and Egor Babaev},
title = {Stable {Kink-Kink} and {Metastable} {Kink-Antikink} {Solutions}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2023},
volume = {19},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a33/}
}
Chris Halcrow; Egor Babaev. Stable Kink-Kink and Metastable Kink-Antikink Solutions. Symmetry, integrability and geometry: methods and applications, Tome 19 (2023). http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a33/
[1] Adam C., Oles K., Romanczukiewicz T., Wereszczynski A., “Spectral walls in soliton collisions”, Phys. Rev. Lett., 122 (2019), 241601, 5 pp., arXiv: 1903.12100 | DOI
[2] Adam C., Oles K., Romanczukiewicz T., Wereszczynski A., “Kink-antikink collisions in a weakly interacting $\phi^4$ model”, Phys. Rev. E, 102 (2020), 062214, 14 pp., arXiv: 1912.09371 | DOI | MR
[3] Adam C., Oles K., Romanczukiewicz T., Wereszczynski A., Zakrzewski W.J., “Spectral walls in multifield kink dynamics”, J. High Energy Phys., 2021:8 (2021), 147, 25 pp., arXiv: 2105.14771 | DOI | MR
[4] Alonso-Izquierdo A., “Non-topological kink scattering in a two-component scalar field theory model”, Commun. Nonlinear Sci. Numer. Simul., 85 (2020), 105251, 17 pp., arXiv: 1906.05040 | DOI | MR | Zbl
[5] Alonso-Izquierdo A., González León M.A., Martín Vaquero J., de la Torre Mayado M., “Kink scattering in a generalized Wess–Zumino model”, Commun. Nonlinear Sci. Numer. Simul., 103 (2021), 106011, 16 pp., arXiv: 2105.05750 | DOI | MR | Zbl
[6] Alonso-Izquierdo A., Leon M.A.G., Guilarte J.M., “BPS and non-BPS kinks in a massive nonlinear $\mathbb{S}^2$-sigma model”, Phys. Rev. D, 79 (2009), 125003, 16 pp., arXiv: 0903.0593 | DOI | MR
[7] Anninos P., Oliveira S., Matzner R.A., “Fractal structure in the scalar $\lambda(\varphi^2- 1)^2$ theory”, Phys. Rev. D, 44 (1991), 1147–1160 | DOI | MR
[8] Babaev E., Speight M., “Semi–Meissner state and neither type-I nor type-II superconductivity in multicomponent superconductors”, Phys. Rev. B, 72 (2005), 180502, 4 pp., arXiv: cond-mat/0411681 | DOI | MR
[9] Barkman M., Samoilenka A., Winyard T., Babaev E., “Ring solitons and soliton sacks in imbalanced fermionic systems”, Phys. Rev. Research, 2 (2020), 043282, 9 pp., arXiv: 2005.03738 | DOI
[10] Barton-Singer B., Schroers B.J., Stability and asymptotic interactions of chiral magnetic skyrmions in a tilted magnetic field, arXiv: 2211.08017
[11] Bazeia D., Campos J.G.F., Mohammadi A., “Resonance mediated by fermions in kink-antikink collisions”, J. High Energy Phys., 2022:12 (2022), 085, 19 pp., arXiv: 2208.13261 | DOI | MR
[12] Bazeia D., Nascimento J.R.S., Ribeiro R.F., Toledo D., “Soliton stability in systems of two real scalar fields”, J. Phys. A, 30 (1997), 8157–8166, arXiv: hep-th/9705224 | DOI | MR | Zbl
[13] Cahill K.E., Comtet A., Glauber R.J., “Mass formulas for static solitons”, Phys. Lett. B, 64 (1976), 283–285 | DOI
[14] Campbell D.K., Schonfeld J.F., Wingate C.A., “Resonance structure in kink-antikink interactions in $\varphi^4$ theory”, Phys. D, 9 (1983), 1–32 | DOI
[15] Carlström J., Garaud J., Babaev E., “Semi–Meissner state and nonpairwise intervortex interactions in type-1.5 superconductors”, Phys. Rev. B, 84 (2011), 134515, 11 pp. | DOI
[16] Catalan G., Seidel J., Ramesh R., Scott J.F., “Domain wall nanoelectronics”, Rev. Modern Phys., 84 (2012), 119–156 | DOI
[17] Danisch S., Krumbiegel J., “Makie.jl: Flexible high-performance data visualization for Julia”, J. Open Source Softw., 6 (2021), 3349, 5 pp. | DOI
[18] Dorey P., Mersh K., Romanczukiewicz T., Shnir Y., “Kink-antikink collisions in the $\phi^6$ model”, Phys. Rev. Lett., 107 (2011), 091602, arXiv: 1101.5951 | DOI
[19] Dorey P., Romańczukiewicz T., “Resonant kink-antikink scattering through quasinormal modes”, Phys. Lett. B, 779 (2018), 117–123, arXiv: 1712.10235 | DOI
[20] Eto M., Fujimori T., Nitta M., Ohashi K., Sakai N.“, Domain walls with non-Abelian clouds”, Phys. Rev. D, 77 (2008), 125008, arXiv: 0802.3135 | DOI
[21] Evslin J., “Manifestly finite derivation of the quantum kink mass”, J. High Energy Phys., 2019:11 (2019), 161, 31 pp., arXiv: 1908.06710 | DOI | MR
[22] Evslin J., “The two-loop $\phi^4$ kink mass”, Phys. Lett. B, 822 (2021), 136628, 4 pp., arXiv: 2109.05852 | DOI | MR
[23] Evslin J., Halcrow C., Romańczukiewicz T., Wereszczyński A., “Spectral walls at one loop”, Phys. Rev. D, 105 (2022), 125002, 22 pp., arXiv: 2202.08249 | DOI | MR
[24] Feist D.T.J., “Interactions of $B=4$ skyrmions”, J. High Energy Phys., 2012:2 (2012), 100, 25 pp., arXiv: 1112.2119 | DOI | MR | Zbl
[25] Gani V.A., Marjaneh A.M., Saadatmand D., “Multi-kink scattering in the double sine-Gordon model”, Eur. Phys. J. C, 79 (2019), 620, 12 pp., arXiv: 1901.07966 | DOI
[26] Halavanau A., Romanczukiewicz T., Shnir Y., “Resonance structures in coupled two-component $\phi^4$ model”, Phys. Rev. D, 86 (2012), 085027, 19 pp., arXiv: 1206.4471 | DOI
[27] Halcrow C.J., “Vibrational quantisation of the $B=7$ skyrmion”, Nuclear Phys. B, 904 (2016), 106–123, arXiv: 1511.00682 | DOI | MR | Zbl
[28] Manton N.S., “An effective Lagrangian for solitons”, Nuclear Phys. B, 150 (1979), 397–412 | DOI | MR
[29] Manton N.S., “Topology in the Weinberg–Salam theory”, Phys. Rev. D, 28 (1983), 2019–2026 | DOI | MR
[30] Manton N.S., “The inevitability of sphalerons in field theory”, Philos. Trans. Roy. Soc. A, 377 (2019), 20180327, 13 pp., arXiv: 1903.11573 | DOI | MR
[31] Manton N.S., Oleś K., Romańczukiewicz T., Wereszczyński A., “Collective coordinate model of kink-antikink collisions in $\phi^4$ theory”, Phys. Rev. Lett., 127 (2021), 071601, 5 pp., arXiv: 2106.05153 | DOI | MR
[32] Montonen C., “On solitons with an Abelian charge in scalar field theories:(I) Classical theory and Bohr–Sommerfeld quantization”, Nuclear Phys. B, 112 (1976), 349–357 | DOI
[33] Moradi Marjaneh A., Gani V.A., Saadatmand D., Dmitriev S.V., Javidan K., “Multi-kink collisions in the $\phi^6$ model”, J. High Energy Phys., 2017:7 (2017), 028, 22 pp., arXiv: 1704.08353 | DOI | MR
[34] Parkin S.S.P., Hayashi M., Thomas L., “Magnetic domain-wall racetrack memory”, Science, 320 (2008), 190–194 | DOI
[35] Portugues R., Townsend P.K., “Intersoliton forces in the Wess–Zumino model”, Phys. Lett. B, 530 (2002), 227–234, arXiv: hep-th/0112077 | DOI | MR | Zbl
[36] Rackauckas C., Nie Q., “DifferentialEquations.jl – a performant and feature-rich ecosystem for solving differential equations in Julia”, J. Open Res. Softw., 5 (2017), 15, 10 pp. | DOI
[37] Rajaraman R., “Solitons of coupled scalar field theories in two dimensions”, Phys. Rev. Lett., 42 (1979), 200–204 | DOI | MR
[38] Sarker S., Trullinger S.E., Bishop A.R., “Solitary-wave solution for a complex one-dimensional field”, Phys. Lett. A, 59 (1976), 255–258 | DOI | MR
[39] Schroers B. J., “Dynamics of moving and spinning Skyrmions”, Z. Phys. C, 61 (1994), 479–494, arXiv: hep-ph/9308236 | DOI
[40] Sharma P., Zhang Q., Sando D., Lei C.H., Liu Y., Li J., Nagarajan V., Seidel J., “Nonvolatile ferroelectric domain wall memory”, Sci. Adv., 3 (2017), e1700512, 8 pp. | DOI
[41] Shifman M.A., Voloshin M., “Degenerate domain wall solutions in supersymmetric theories”, Phys. Rev. D, 57 (1998), 2590–2598, arXiv: hep-th/9709137 | DOI | MR
[42] Sugiyama T., “Kink-antikink collisions in the two-dimensional $\varphi^4$ model”, Prog. Theor. Phys., 61 (1979), 1550–1563 | DOI
[43] Taubes C.H., “The existence of a nonminimal solution to the ${\rm SU}(2)$ Yang–Mills–Higgs equations on ${\mathbb R}^{3}$ {I}”, Comm. Math. Phys., 86 (1982), 257–298 | DOI | MR | Zbl
[44] Walliser H., Holzwarth G., “The Casimir energy of skyrmions in the (2+1)-dimensional ${\rm O}(3)$ model”, Phys. Rev. B, 61 (2000), 2819, arXiv: hep-ph/9907492 | DOI