Derivations and Central Extensions of Symmetric Modular Lie Algebras and Superalgebras (with an Appendix by Andrey Krutov)
Symmetry, integrability and geometry: methods and applications, Tome 19 (2023) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Over algebraically closed fields of positive characteristic, for simple Lie (super)algebras, and certain Lie (super)algebras close to simple ones, with symmetric root systems (such that for each root, there is minus it of the same multiplicity) and of ranks less than or equal to 8—most needed in an approach to the classification of simple vectorial Lie superalgebras (i.e., Lie superalgebras realized by means of vector fields on a supermanifold),—we list the outer derivations and nontrivial central extensions. When the conjectural answer is clear for the infinite series, it is given for any rank. We also list the outer derivations and nontrivial central extensions of one series of non-symmetric (except when considered in characteristic 2), namely periplectic, Lie superalgebras—the one that preserves the nondegenerate symmetric odd bilinear form, and of the Lie algebras obtained from them by desuperization. We also list the outer derivations and nontrivial central extensions of an analog of the rank 2 exceptional Lie algebra discovered by Shen Guangyu. Several results indigenous to positive characteristic are of particular interest being unlike known theorems for characteristic 0, some results are, moreover, counterintuitive.
Keywords: modular Lie superalgebra, derivation, central extension.
@article{SIGMA_2023_19_a31,
     author = {Sofiane Bouarroudj and Pavel Grozman and Alexei Lebedev and Dimitry Leites},
     title = {Derivations and {Central} {Extensions} of {Symmetric} {Modular} {Lie} {Algebras} and {Superalgebras} (with an {Appendix} by {Andrey} {Krutov)}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2023},
     volume = {19},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a31/}
}
TY  - JOUR
AU  - Sofiane Bouarroudj
AU  - Pavel Grozman
AU  - Alexei Lebedev
AU  - Dimitry Leites
TI  - Derivations and Central Extensions of Symmetric Modular Lie Algebras and Superalgebras (with an Appendix by Andrey Krutov)
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2023
VL  - 19
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a31/
LA  - en
ID  - SIGMA_2023_19_a31
ER  - 
%0 Journal Article
%A Sofiane Bouarroudj
%A Pavel Grozman
%A Alexei Lebedev
%A Dimitry Leites
%T Derivations and Central Extensions of Symmetric Modular Lie Algebras and Superalgebras (with an Appendix by Andrey Krutov)
%J Symmetry, integrability and geometry: methods and applications
%D 2023
%V 19
%U http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a31/
%G en
%F SIGMA_2023_19_a31
Sofiane Bouarroudj; Pavel Grozman; Alexei Lebedev; Dimitry Leites. Derivations and Central Extensions of Symmetric Modular Lie Algebras and Superalgebras (with an Appendix by Andrey Krutov). Symmetry, integrability and geometry: methods and applications, Tome 19 (2023). http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a31/

[1] Albuquerque H., Barreiro E., Benayadi S., “Quadratic Lie superalgebras with a reductive even part”, J. Pure Appl. Algebra, 213 (2009), 724–731 | DOI | MR | Zbl

[2] Albuquerque H., Barreiro E., Benayadi S., “Odd-quadratic Lie superalgebras”, J. Geom. Phys., 60 (2010), 230–250 | DOI | MR | Zbl

[3] Benayadi S., Bouarroudj S., “Double extensions of Lie superalgebras in characteristic $2$ with nondegenerate invariant supersymmetric bilinear form”, J. Algebra, 510 (2018), 141–179, arXiv: 1707.00970 | DOI | MR | Zbl

[4] Benayadi S., Bouarroudj S., Hajli M., “Double extensions of restricted Lie (super)algebras”, Arnold Math. J., 6 (2020), 231–269, arXiv: 1810.03086 | DOI | MR | Zbl

[5] Benkart G., Gregory T., Premet A., The recognition theorem for graded Lie algebras in prime characteristic, Mem. Amer. Math. Soc., 197, 2009, xii+145 pp., arXiv: math.RA/0508373 | DOI | MR

[6] Bernstein J., Leites D., Molotkov V., Shander V., Seminar on supersymmetries, v. 1, Algebra and calculus: main facts, MCCME, M., 2011

[7] Block R.E., Wilson R.L., “Classification of the restricted simple Lie algebras”, J. Algebra, 114 (1988), 115–259 | DOI | MR | Zbl

[8] Bouarroudj S., Grozman P., Lebedev A., Leites D., “Divided power (co)homology. Presentations of simple finite dimensional modular Lie superalgebras with Cartan matrix”, Homology Homotopy Appl., 12 (2010), 237–278, arXiv: 0911.0243 | DOI | MR | Zbl

[9] Bouarroudj S., Grozman P., Lebedev A., Leites D., Shchepochkina I., “New simple Lie algebras in characteristic $2$”, Int. Math. Res. Not., 2016 (2016), 5695–5726, arXiv: 1307.1551 | DOI | MR | Zbl

[10] Bouarroudj S., Grozman P., Lebedev A., Leites D., Shchepochkina I., “Simple vectorial Lie algebras in characteristic $2$ and their superizations”, SIGMA, 16 (2020), 089, 101 pp., arXiv: 1510.07255 | DOI | MR | Zbl

[11] Bouarroudj S., Grozman P., Leites D., “New simple modular Lie superalgebras as generalized prolongations”, Funct. Anal. Appl., 42 (2008), 161–168, arXiv: 0704.0130 | DOI | MR | Zbl

[12] Bouarroudj S., Grozman P., Leites D., “Classification of finite dimensional modular Lie superalgebras with indecomposable Cartan matrix”, SIGMA, 5 (2009), 060, 63 pp., arXiv: 0710.5149 | DOI | MR | Zbl

[13] Bouarroudj S., Grozman P., Leites D., “Deformations of symmetric simple modular Lie algebras and Lie superalgebras”, SIGMA, 19 (2023), 031, 66 pp., arXiv: 0807.3054 | DOI | MR

[14] Bouarroudj S., Krutov A., Lebedev A., Leites D., Shchepochkina I., “Restricted simple Lie (super)algebras in characteristic $3$”, Funct. Anal. Appl., 52 (2018), 49–52, arXiv: 1809.08582 | DOI | MR | Zbl

[15] Bouarroudj S., Krutov A., Leites D., Shchepochkina I., “Non-degenerate invariant (super)symmetric bilinear forms on simple Lie (super)algebras”, Algebr. Represent. Theory, 21 (2018), 897–941, arXiv: 1806.05505 | DOI | MR | Zbl

[16] Bouarroudj S., Lebedev A., Leites D., Shchepochkina I., “Lie algebra deformations in characteristic $2$”, Math. Res. Lett., 22 (2015), 353–402, arXiv: 1301.2781 | DOI | MR | Zbl

[17] Bouarroudj S., Lebedev A., Leites D., Shchepochkina I., “Classification of simple Lie superalgebras in characteristic $2$”, Int. Math. Res. Not., 2023 (2023), 54–94, arXiv: 1407.1695 | DOI | MR

[18] Bouarroudj S., Lebedev A., Vagemann F., “Deformations of the Lie algebra $\mathfrak{o}(5)$ in characteristics $3$ and $2$”, Math. Notes, 89 (2011), 777–791, arXiv: 0909.3572 | DOI | MR | Zbl

[19] Bouarroudj S., Leites D., “Simple Lie superalgebras and nonintegrable distributions in characteristic $p$”, J. Math. Sci., 141 (2007), 1390–1398, arXiv: math.RT/0606682 | DOI | MR

[20] Bouarroudj S., Leites D., Lozhechnyk O., Shang J., “The roots of exceptional modular Lie superalgebras with Cartan matrix”, Arnold Math. J., 6 (2020), 63–118, arXiv: 1904.09578 | DOI | MR | Zbl

[21] Bouarroudj S., Leites D., Shang J., “Computer-aided study of double extensions of restricted lie superalgebras preserving the nondegenerate closed $2$-forms in characteristic $2$”, Exp. Math., 31 (2022), 676–688, arXiv: 1904.09579 | DOI | MR | Zbl

[22] Brown G., “Families of simple Lie algebras of characteristic two”, Comm. Algebra, 23 (1995), 941–954 | DOI | MR | Zbl

[23] Chebochko N.G., “Deformations of classical Lie algebras with a homogeneous root system in characteristic two. I”, Sb. Math., 196 (2005), 1371–1402 | DOI | MR | Zbl

[24] Dzhumadil'daev A.S., “On the cohomology of modular Lie algebras”, Math. USSR Sb., 47 (1984), 127–143 | DOI | Zbl

[25] Dzhumadil'daev A.S., “Central extensions of Zassenhaus algebra and their irreducible representations”, Math. USSR Sb., 54 (1986), 457–474 | DOI | Zbl

[26] Dzhumadil'daev A.S., “Symmetric (co)homologies of Lie algebras”, C. R. Acad. Sci. Paris Sér. I Math., 324 (1997), 497–502 | DOI | MR | Zbl

[27] Dzhumadil'daev A.S., Ibraev Sh.Sh., “Nonsplit extensions of modular Lie algebras of rank $2$”, Homology Homotopy Appl., 4 (2002), 141–163 | DOI | MR | Zbl

[28] Dzhumadil'daev A.S., Zusmanovich P., “Commutative $2$-cocycles on Lie algebras”, J. Algebra, 324 (2010), 732–748, arXiv: 0907.4780 | DOI | MR | Zbl

[29] Eick B., “Some new simple Lie algebras in characteristic $2$”, J. Symbolic Comput., 45 (2010), 943–951 | DOI | MR | Zbl

[30] Frohardt D.E., Griess Jr. R.L., “Automorphisms of modular Lie algebras”, Nova J. Algebra Geom., 1 (1992), 339–345 | MR | Zbl

[31] Grishkov A., Zusmanovich P., “Deformations of current Lie algebras. I Small algebras in characteristic $2$”, J. Algebra, 473 (2017), 513–544, arXiv: 1410.3645 | DOI | MR | Zbl

[32] Grozman P., SuperLie, 2013 http://www.equaonline.com/math/SuperLie

[33] Grozman P., Leites D., “Structures of $G(2)$ type and nonintegrable distributions in characteristic $p$”, Lett. Math. Phys., 74 (2005), 229–262, arXiv: math.RT/0509400 | DOI | MR | Zbl

[34] Ibraev Sh.Sh., “On central extensions of classical Lie algebras”, Sib. Electron. Math. Rep., 10 (2013), 450–453 | DOI | MR | Zbl

[35] Ibraev Sh.Sh., “On the first cohomology of an algebraic group and its Lie algebra in positive characteristic”, Math. Notes, 96 (2014), 491–498 | DOI | MR | Zbl

[36] Iyer U.N., Lebedev A., Leites D., “Prolongs of (ortho-)orthogonal {L}ie (super)algebras in characteristic $2$”, J. Nonlinear Math. Phys., 17 (2010), 253–309 | DOI | MR | Zbl

[37] Kac V.G., “Corrections to: "Exponentials in Lie algebras of characteristic $p$" (Izv. Math. 35 (1971), 762–788)”, Izv. Math., 45 (1995), 229 | DOI | MR

[38] Kondrateva A.V., Non-alternating Hamiltonian Lie algebras in three variables, arXiv: 2101.00398

[39] Kondrateva A.V., Kuznetsov M.I., Chebochko N.G., Non-alternating Hamiltonian Lie algebras in characteristic $2$. I, arXiv: 1812.11213

[40] Kostrikin A.I., “The beginnings of modular Lie algebra theory”, Group Theory, Algebra, and Number Theory (Saarbrücken, 1993), De Gruyter, Berlin, 1996, 13–52 | DOI | MR | Zbl

[41] Kostrikin A.I., Dzhumadil'daev A.S., “Modular Lie algebras: new trends”, Algebra (Moscow, 1998), De Gruyter, Berlin, 2000, 181–203 | MR | Zbl

[42] Krutov A., Lebedev A., “On gradings modulo $2$ of simple Lie algebras in characteristic $2$”, SIGMA, 14 (2018), 130, 27 pp., arXiv: 1711.00638 | DOI | MR | Zbl

[43] Krutov A., Lebedev A., Leites D., Shchepochkina I., “Nondegenerate invariant symmetric bilinear forms on simple Lie superalgebras in characteristic $2$”, Linear Algebra Appl., 649 (2022), 1–21, arXiv: 2102.11653 | DOI | MR | Zbl

[44] Krutov A., Leites D., Shang J., The Duflo–Serganova homology for exceptional modular Lie superalgebras with indecomposable Cartan matrix, arXiv: 2008.12033

[45] Lebedev A., Simple modular Lie superalgebras, Ph.D. Thesis, Leipzig University, 2008 | Zbl

[46] Lebedev A., “Analogs of the orthogonal, Hamiltonian, Poisson, and contact Lie superalgebras in characteristic $2$”, J. Nonlinear Math. Phys., 17 (2010), 217–251 | DOI | MR | Zbl

[47] Lebedev A., Leites D., “On realizations of the Steenrod algebras”, J. Prime Res. Math., 2 (2006), 101–112 | MR | Zbl

[48] Leites D., “Towards classification of simple finite dimensional modular Lie superalgebras”, J. Prime Res. Math., 3 (2007), 101–110, arXiv: 0710.5638 | MR | Zbl

[49] Leites D., Shchepochkina I.M., Classification of the simple Lie superalgebras of vector fields, Preprint MPIM-2003-28, 2003 http://www.mpim-bonn.mpg.de/preblob/2178 | Zbl

[50] Melikyan H., Zusmanovich P., “Melikyan algebra is a deformation of a Poisson algebra”, J. Phys. Conf. Ser., 532 (2014), 012019, 5 pp., arXiv: 1401.2566 | DOI

[51] Neeb K.-H., Wagemann F., “The second cohomology of current algebras of general Lie algebras”, Canad. J. Math., 60 (2008), 892–922, arXiv: math.RA/0511260 | DOI | MR | Zbl

[52] Permiakov D., “Derivations of classical Lie algebras over the field of characteristic $2$”, Vest. Lobachevsky State Univ. Nizhni Novgorod, 1 (2005), 123–134

[53] Shchepochkina I., “How to realize a Lie algebra by vector fields”, Theoret. and Math. Phys., 147 (2006), 821–838, arXiv: math.RT/0509472 | DOI | MR | Zbl

[54] Shen G.Y., “Variations of the classical Lie algebra $G_2$ in low characteristics”, Nova J. Algebra Geom., 2 (1993), 217–243 | MR | Zbl

[55] Skryabin S.M., “Classification of Hamiltonian forms over algebras of divided powers”, Math. USSR Sb., 69 (1991), 121–141 | DOI | MR | Zbl

[56] Skryabin S.M., “A contragredient $29$-dimensional Lie algebra of characteristic $3$”, Sib. Math. J., 34 (1993), 548–554 | DOI | MR | Zbl

[57] Skryabin S.M., “Toral rank one simple Lie algebras of low characteristics”, J. Algebra, 200 (1998), 650–700 | DOI | MR | Zbl

[58] Skryabin S.M., The normal shapes of symplectic and contact forms over algebras of divided powers, arXiv: 1906.11496

[59] Strade H., Simple Lie algebras over fields of positive characteristic. I Structure theory, De Gruyter Exp. Math., 38, De Gruyter, Berlin, 2004 | DOI | MR | Zbl

[60] Tyurin S.A., “Classification of deformations of the special {L}ie algebra of Cartan type”, Math. Notes, 24 (1978), 948–954 | DOI | MR

[61] Weisfeiler B.Ju., Kac V.G., “Exponentials in Lie algebras of characteristic $p$”, Math. USSR Izv., 5 (1971), 777–803 | DOI | MR

[62] Wilson R.L., “Simple Lie algebras of type $S$”, J. Algebra, 62 (1980), 292–298 | DOI | MR | Zbl

[63] Zusmanovich P., “A converse to the second Whitehead lemma”, J. Lie Theory, 18 (2008), 295–299 ; Erratum, J. Lie Theory, 24 (2014), 1207–1208, arXiv: 0704.3864 | MR | Zbl | MR | Zbl