@article{SIGMA_2023_19_a31,
author = {Sofiane Bouarroudj and Pavel Grozman and Alexei Lebedev and Dimitry Leites},
title = {Derivations and {Central} {Extensions} of {Symmetric} {Modular} {Lie} {Algebras} and {Superalgebras} (with an {Appendix} by {Andrey} {Krutov)}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2023},
volume = {19},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a31/}
}
TY - JOUR AU - Sofiane Bouarroudj AU - Pavel Grozman AU - Alexei Lebedev AU - Dimitry Leites TI - Derivations and Central Extensions of Symmetric Modular Lie Algebras and Superalgebras (with an Appendix by Andrey Krutov) JO - Symmetry, integrability and geometry: methods and applications PY - 2023 VL - 19 UR - http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a31/ LA - en ID - SIGMA_2023_19_a31 ER -
%0 Journal Article %A Sofiane Bouarroudj %A Pavel Grozman %A Alexei Lebedev %A Dimitry Leites %T Derivations and Central Extensions of Symmetric Modular Lie Algebras and Superalgebras (with an Appendix by Andrey Krutov) %J Symmetry, integrability and geometry: methods and applications %D 2023 %V 19 %U http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a31/ %G en %F SIGMA_2023_19_a31
Sofiane Bouarroudj; Pavel Grozman; Alexei Lebedev; Dimitry Leites. Derivations and Central Extensions of Symmetric Modular Lie Algebras and Superalgebras (with an Appendix by Andrey Krutov). Symmetry, integrability and geometry: methods and applications, Tome 19 (2023). http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a31/
[1] Albuquerque H., Barreiro E., Benayadi S., “Quadratic Lie superalgebras with a reductive even part”, J. Pure Appl. Algebra, 213 (2009), 724–731 | DOI | MR | Zbl
[2] Albuquerque H., Barreiro E., Benayadi S., “Odd-quadratic Lie superalgebras”, J. Geom. Phys., 60 (2010), 230–250 | DOI | MR | Zbl
[3] Benayadi S., Bouarroudj S., “Double extensions of Lie superalgebras in characteristic $2$ with nondegenerate invariant supersymmetric bilinear form”, J. Algebra, 510 (2018), 141–179, arXiv: 1707.00970 | DOI | MR | Zbl
[4] Benayadi S., Bouarroudj S., Hajli M., “Double extensions of restricted Lie (super)algebras”, Arnold Math. J., 6 (2020), 231–269, arXiv: 1810.03086 | DOI | MR | Zbl
[5] Benkart G., Gregory T., Premet A., The recognition theorem for graded Lie algebras in prime characteristic, Mem. Amer. Math. Soc., 197, 2009, xii+145 pp., arXiv: math.RA/0508373 | DOI | MR
[6] Bernstein J., Leites D., Molotkov V., Shander V., Seminar on supersymmetries, v. 1, Algebra and calculus: main facts, MCCME, M., 2011
[7] Block R.E., Wilson R.L., “Classification of the restricted simple Lie algebras”, J. Algebra, 114 (1988), 115–259 | DOI | MR | Zbl
[8] Bouarroudj S., Grozman P., Lebedev A., Leites D., “Divided power (co)homology. Presentations of simple finite dimensional modular Lie superalgebras with Cartan matrix”, Homology Homotopy Appl., 12 (2010), 237–278, arXiv: 0911.0243 | DOI | MR | Zbl
[9] Bouarroudj S., Grozman P., Lebedev A., Leites D., Shchepochkina I., “New simple Lie algebras in characteristic $2$”, Int. Math. Res. Not., 2016 (2016), 5695–5726, arXiv: 1307.1551 | DOI | MR | Zbl
[10] Bouarroudj S., Grozman P., Lebedev A., Leites D., Shchepochkina I., “Simple vectorial Lie algebras in characteristic $2$ and their superizations”, SIGMA, 16 (2020), 089, 101 pp., arXiv: 1510.07255 | DOI | MR | Zbl
[11] Bouarroudj S., Grozman P., Leites D., “New simple modular Lie superalgebras as generalized prolongations”, Funct. Anal. Appl., 42 (2008), 161–168, arXiv: 0704.0130 | DOI | MR | Zbl
[12] Bouarroudj S., Grozman P., Leites D., “Classification of finite dimensional modular Lie superalgebras with indecomposable Cartan matrix”, SIGMA, 5 (2009), 060, 63 pp., arXiv: 0710.5149 | DOI | MR | Zbl
[13] Bouarroudj S., Grozman P., Leites D., “Deformations of symmetric simple modular Lie algebras and Lie superalgebras”, SIGMA, 19 (2023), 031, 66 pp., arXiv: 0807.3054 | DOI | MR
[14] Bouarroudj S., Krutov A., Lebedev A., Leites D., Shchepochkina I., “Restricted simple Lie (super)algebras in characteristic $3$”, Funct. Anal. Appl., 52 (2018), 49–52, arXiv: 1809.08582 | DOI | MR | Zbl
[15] Bouarroudj S., Krutov A., Leites D., Shchepochkina I., “Non-degenerate invariant (super)symmetric bilinear forms on simple Lie (super)algebras”, Algebr. Represent. Theory, 21 (2018), 897–941, arXiv: 1806.05505 | DOI | MR | Zbl
[16] Bouarroudj S., Lebedev A., Leites D., Shchepochkina I., “Lie algebra deformations in characteristic $2$”, Math. Res. Lett., 22 (2015), 353–402, arXiv: 1301.2781 | DOI | MR | Zbl
[17] Bouarroudj S., Lebedev A., Leites D., Shchepochkina I., “Classification of simple Lie superalgebras in characteristic $2$”, Int. Math. Res. Not., 2023 (2023), 54–94, arXiv: 1407.1695 | DOI | MR
[18] Bouarroudj S., Lebedev A., Vagemann F., “Deformations of the Lie algebra $\mathfrak{o}(5)$ in characteristics $3$ and $2$”, Math. Notes, 89 (2011), 777–791, arXiv: 0909.3572 | DOI | MR | Zbl
[19] Bouarroudj S., Leites D., “Simple Lie superalgebras and nonintegrable distributions in characteristic $p$”, J. Math. Sci., 141 (2007), 1390–1398, arXiv: math.RT/0606682 | DOI | MR
[20] Bouarroudj S., Leites D., Lozhechnyk O., Shang J., “The roots of exceptional modular Lie superalgebras with Cartan matrix”, Arnold Math. J., 6 (2020), 63–118, arXiv: 1904.09578 | DOI | MR | Zbl
[21] Bouarroudj S., Leites D., Shang J., “Computer-aided study of double extensions of restricted lie superalgebras preserving the nondegenerate closed $2$-forms in characteristic $2$”, Exp. Math., 31 (2022), 676–688, arXiv: 1904.09579 | DOI | MR | Zbl
[22] Brown G., “Families of simple Lie algebras of characteristic two”, Comm. Algebra, 23 (1995), 941–954 | DOI | MR | Zbl
[23] Chebochko N.G., “Deformations of classical Lie algebras with a homogeneous root system in characteristic two. I”, Sb. Math., 196 (2005), 1371–1402 | DOI | MR | Zbl
[24] Dzhumadil'daev A.S., “On the cohomology of modular Lie algebras”, Math. USSR Sb., 47 (1984), 127–143 | DOI | Zbl
[25] Dzhumadil'daev A.S., “Central extensions of Zassenhaus algebra and their irreducible representations”, Math. USSR Sb., 54 (1986), 457–474 | DOI | Zbl
[26] Dzhumadil'daev A.S., “Symmetric (co)homologies of Lie algebras”, C. R. Acad. Sci. Paris Sér. I Math., 324 (1997), 497–502 | DOI | MR | Zbl
[27] Dzhumadil'daev A.S., Ibraev Sh.Sh., “Nonsplit extensions of modular Lie algebras of rank $2$”, Homology Homotopy Appl., 4 (2002), 141–163 | DOI | MR | Zbl
[28] Dzhumadil'daev A.S., Zusmanovich P., “Commutative $2$-cocycles on Lie algebras”, J. Algebra, 324 (2010), 732–748, arXiv: 0907.4780 | DOI | MR | Zbl
[29] Eick B., “Some new simple Lie algebras in characteristic $2$”, J. Symbolic Comput., 45 (2010), 943–951 | DOI | MR | Zbl
[30] Frohardt D.E., Griess Jr. R.L., “Automorphisms of modular Lie algebras”, Nova J. Algebra Geom., 1 (1992), 339–345 | MR | Zbl
[31] Grishkov A., Zusmanovich P., “Deformations of current Lie algebras. I Small algebras in characteristic $2$”, J. Algebra, 473 (2017), 513–544, arXiv: 1410.3645 | DOI | MR | Zbl
[32] Grozman P., SuperLie, 2013 http://www.equaonline.com/math/SuperLie
[33] Grozman P., Leites D., “Structures of $G(2)$ type and nonintegrable distributions in characteristic $p$”, Lett. Math. Phys., 74 (2005), 229–262, arXiv: math.RT/0509400 | DOI | MR | Zbl
[34] Ibraev Sh.Sh., “On central extensions of classical Lie algebras”, Sib. Electron. Math. Rep., 10 (2013), 450–453 | DOI | MR | Zbl
[35] Ibraev Sh.Sh., “On the first cohomology of an algebraic group and its Lie algebra in positive characteristic”, Math. Notes, 96 (2014), 491–498 | DOI | MR | Zbl
[36] Iyer U.N., Lebedev A., Leites D., “Prolongs of (ortho-)orthogonal {L}ie (super)algebras in characteristic $2$”, J. Nonlinear Math. Phys., 17 (2010), 253–309 | DOI | MR | Zbl
[37] Kac V.G., “Corrections to: "Exponentials in Lie algebras of characteristic $p$" (Izv. Math. 35 (1971), 762–788)”, Izv. Math., 45 (1995), 229 | DOI | MR
[38] Kondrateva A.V., Non-alternating Hamiltonian Lie algebras in three variables, arXiv: 2101.00398
[39] Kondrateva A.V., Kuznetsov M.I., Chebochko N.G., Non-alternating Hamiltonian Lie algebras in characteristic $2$. I, arXiv: 1812.11213
[40] Kostrikin A.I., “The beginnings of modular Lie algebra theory”, Group Theory, Algebra, and Number Theory (Saarbrücken, 1993), De Gruyter, Berlin, 1996, 13–52 | DOI | MR | Zbl
[41] Kostrikin A.I., Dzhumadil'daev A.S., “Modular Lie algebras: new trends”, Algebra (Moscow, 1998), De Gruyter, Berlin, 2000, 181–203 | MR | Zbl
[42] Krutov A., Lebedev A., “On gradings modulo $2$ of simple Lie algebras in characteristic $2$”, SIGMA, 14 (2018), 130, 27 pp., arXiv: 1711.00638 | DOI | MR | Zbl
[43] Krutov A., Lebedev A., Leites D., Shchepochkina I., “Nondegenerate invariant symmetric bilinear forms on simple Lie superalgebras in characteristic $2$”, Linear Algebra Appl., 649 (2022), 1–21, arXiv: 2102.11653 | DOI | MR | Zbl
[44] Krutov A., Leites D., Shang J., The Duflo–Serganova homology for exceptional modular Lie superalgebras with indecomposable Cartan matrix, arXiv: 2008.12033
[45] Lebedev A., Simple modular Lie superalgebras, Ph.D. Thesis, Leipzig University, 2008 | Zbl
[46] Lebedev A., “Analogs of the orthogonal, Hamiltonian, Poisson, and contact Lie superalgebras in characteristic $2$”, J. Nonlinear Math. Phys., 17 (2010), 217–251 | DOI | MR | Zbl
[47] Lebedev A., Leites D., “On realizations of the Steenrod algebras”, J. Prime Res. Math., 2 (2006), 101–112 | MR | Zbl
[48] Leites D., “Towards classification of simple finite dimensional modular Lie superalgebras”, J. Prime Res. Math., 3 (2007), 101–110, arXiv: 0710.5638 | MR | Zbl
[49] Leites D., Shchepochkina I.M., Classification of the simple Lie superalgebras of vector fields, Preprint MPIM-2003-28, 2003 http://www.mpim-bonn.mpg.de/preblob/2178 | Zbl
[50] Melikyan H., Zusmanovich P., “Melikyan algebra is a deformation of a Poisson algebra”, J. Phys. Conf. Ser., 532 (2014), 012019, 5 pp., arXiv: 1401.2566 | DOI
[51] Neeb K.-H., Wagemann F., “The second cohomology of current algebras of general Lie algebras”, Canad. J. Math., 60 (2008), 892–922, arXiv: math.RA/0511260 | DOI | MR | Zbl
[52] Permiakov D., “Derivations of classical Lie algebras over the field of characteristic $2$”, Vest. Lobachevsky State Univ. Nizhni Novgorod, 1 (2005), 123–134
[53] Shchepochkina I., “How to realize a Lie algebra by vector fields”, Theoret. and Math. Phys., 147 (2006), 821–838, arXiv: math.RT/0509472 | DOI | MR | Zbl
[54] Shen G.Y., “Variations of the classical Lie algebra $G_2$ in low characteristics”, Nova J. Algebra Geom., 2 (1993), 217–243 | MR | Zbl
[55] Skryabin S.M., “Classification of Hamiltonian forms over algebras of divided powers”, Math. USSR Sb., 69 (1991), 121–141 | DOI | MR | Zbl
[56] Skryabin S.M., “A contragredient $29$-dimensional Lie algebra of characteristic $3$”, Sib. Math. J., 34 (1993), 548–554 | DOI | MR | Zbl
[57] Skryabin S.M., “Toral rank one simple Lie algebras of low characteristics”, J. Algebra, 200 (1998), 650–700 | DOI | MR | Zbl
[58] Skryabin S.M., The normal shapes of symplectic and contact forms over algebras of divided powers, arXiv: 1906.11496
[59] Strade H., Simple Lie algebras over fields of positive characteristic. I Structure theory, De Gruyter Exp. Math., 38, De Gruyter, Berlin, 2004 | DOI | MR | Zbl
[60] Tyurin S.A., “Classification of deformations of the special {L}ie algebra of Cartan type”, Math. Notes, 24 (1978), 948–954 | DOI | MR
[61] Weisfeiler B.Ju., Kac V.G., “Exponentials in Lie algebras of characteristic $p$”, Math. USSR Izv., 5 (1971), 777–803 | DOI | MR
[62] Wilson R.L., “Simple Lie algebras of type $S$”, J. Algebra, 62 (1980), 292–298 | DOI | MR | Zbl
[63] Zusmanovich P., “A converse to the second Whitehead lemma”, J. Lie Theory, 18 (2008), 295–299 ; Erratum, J. Lie Theory, 24 (2014), 1207–1208, arXiv: 0704.3864 | MR | Zbl | MR | Zbl