Mots-clés : discrete Painlevé equations, orthogonal polynomials
@article{SIGMA_2023_19_a29,
author = {Thomas Chouteau and Sofia Tarricone},
title = {Recursion {Relation} for {Toeplitz} {Determinants} and the {Discrete} {Painlev\'e~II} {Hierarchy}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2023},
volume = {19},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a29/}
}
TY - JOUR AU - Thomas Chouteau AU - Sofia Tarricone TI - Recursion Relation for Toeplitz Determinants and the Discrete Painlevé II Hierarchy JO - Symmetry, integrability and geometry: methods and applications PY - 2023 VL - 19 UR - http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a29/ LA - en ID - SIGMA_2023_19_a29 ER -
%0 Journal Article %A Thomas Chouteau %A Sofia Tarricone %T Recursion Relation for Toeplitz Determinants and the Discrete Painlevé II Hierarchy %J Symmetry, integrability and geometry: methods and applications %D 2023 %V 19 %U http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a29/ %G en %F SIGMA_2023_19_a29
Thomas Chouteau; Sofia Tarricone. Recursion Relation for Toeplitz Determinants and the Discrete Painlevé II Hierarchy. Symmetry, integrability and geometry: methods and applications, Tome 19 (2023). http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a29/
[1] Adler M., van Moerbeke P., “Recursion relations for unitary integrals, combinatorics and the Toeplitz lattice”, Comm. Math. Phys., 237 (2003), 397–440, arXiv: math-ph/0201063 | DOI | MR | Zbl
[2] Baik J., “Riemann–Hilbert problems for last passage percolation”, Recent Developments in Integrable Systems and Riemann–Hilbert Problems (Birmingham, AL, 2000), Contemp. Math., 326, Amer. Math. Soc., Providence, RI, 2003, 1–21, arXiv: math.PR/0107079 | DOI | MR | Zbl
[3] Baik J., Deift P., Johansson K., “On the distribution of the length of the longest increasing subsequence of random permutations”, J. Amer. Math. Soc., 12 (1999), 1119–1178, arXiv: math.CO/9810105 | DOI | MR | Zbl
[4] Baik J., Deift P., Suidan T., Combinatorics and random matrix theory, Grad. Stud. Math., 172, Amer. Math. Soc., Providence, RI, 2016 | DOI | MR | Zbl
[5] Betea D., Bouttier J., Walsh H., “Multicritical random partitions”, Sém. Lothar. Combin., 85 B (2021), 33, 12 pp., arXiv: 2012.01995 | MR
[6] Borodin A., “Discrete gap probabilities and discrete Painlevé equations”, Duke Math. J., 117 (2003), 489–542, arXiv: math-ph/0111008 | DOI | MR | Zbl
[7] Borodin A., Okounkov A., “A Fredholm determinant formula for Toeplitz determinants”, Integral Equations Operator Theory, 37 (2000), 386–396, arXiv: math.CA/9907165 | DOI | MR | Zbl
[8] Cafasso M., Claeys T., Girotti M., “Fredholm determinant solutions of the Painlevé II hierarchy and gap probabilities of determinantal point processes”, Int. Math. Res. Not., 2021 (2021), 2437–2478, arXiv: 1902.05595 | DOI | MR | Zbl
[9] Cafasso M., Ruzza G., “Integrable equations associated with the finite-temperature deformation of the discrete Bessel point proces”, J. Lond. Math. Soc. (to appear) , arXiv: 2207.01421 | DOI
[10] Clarkson P.A., Joshi N., Mazzocco M., “The Lax pair for the m{K}d{V} hierarchy”, Théories Asymptotiques et Équations de Painlevé, Sémin. Congr., 14, Soc. Math. France, Paris, 2006, 53–64 | MR | Zbl
[11] Cresswell C., Joshi N., “The discrete first, second and thirty-fourth Painlevé hierarchies”, J. Phys. A, 32 (1999), 655–669 | DOI | MR | Zbl
[12] Dattoli G., Chiccoli C., Lorenzutta S., Maino G., Richetta M., Torre A., “Generating functions of multivariable generalized Bessel functions and Jacobi-elliptic functions”, J. Math. Phys., 33 (1992), 25–36 | DOI | MR | Zbl
[13] Deift P.A., Orthogonal polynomials and random matrices: a Riemann–Hilbert approach, Courant Lect. Notes Math., 3, Amer. Math. Soc., Providence, RI, 1999 | MR
[14] Flaschka H., Newell A.C., “Monodromy- and spectrum-preserving deformations. I”, Comm. Math. Phys., 76 (1980), 65–116 | DOI | MR | Zbl
[15] Fokas A.S., Its A.R., Kitaev A.V., “Discrete Painlevé equations and their appearance in quantum gravity”, Comm. Math. Phys., 142 (1991), 313–344 | DOI | MR | Zbl
[16] Forrester P.J., Witte N.S., “Bi-orthogonal polynomials on the unit circle, regular semi-classical weights and integrable systems”, Constr. Approx., 24 (2006), 201–237, arXiv: math.CA/0412394 | DOI | MR | Zbl
[17] Hastings S.P., McLeod J.B., “A boundary value problem associated with the second Painlevé transcendent and the Korteweg–de Vries equation”, Arch. Rational Mech. Anal., 73 (1980), 31–51 | DOI | MR | Zbl
[18] Hisakado M., “Unitary matrix models and Painlevé III”, Modern Phys. Lett. A, 11 (1996), 3001–3010, arXiv: hep-th/9609214 | DOI | MR | Zbl
[19] Hisakado M., Wadati M., “Matrix models of two-dimensional gravity and discrete Toda theory”, Modern Phys. Lett. A, 11 (1996), 1797–1806, arXiv: hep-th/9605175 | DOI | MR | Zbl
[20] Its A.R., Kitaev A.V., Fokas A.S., “An isomonodromy approach to the theory of two-dimensional quantum gravity”, Russian Math. Surveys, 45 (1990), 155–157 | DOI | MR | Zbl
[21] Kimura T., Zahabi A., “Universal edge scaling in random partitions”, Lett. Math. Phys., 111 (2021), 48, 16 pp., arXiv: 2012.06424 | DOI | MR | Zbl
[22] Le Doussal P., Majumdar S.N., Schehr G., “Multicritical edge statistics for the momenta of fermions in nonharmonic traps”, Phys. Rev. Lett., 121 (2018), 030603, 7 pp., arXiv: 1802.06436 | DOI
[23] Okounkov A., “Infinite wedge and random partitions”, Selecta Math. (N.S.), 7 (2001), 57–81, arXiv: math.RT/9907127 | DOI | MR | Zbl
[24] Painlevé P., “Mémoire sur les équations différentielles dont l'intégrale générale est uniforme”, Bull. Soc. Math. France, 28 (1900), 201–261 | DOI | MR
[25] Periwal V., Shevitz D., “Exactly solvable unitary matrix models: multicritical potentials and correlations”, Nuclear Phys. B, 344 (1990), 731–746 | DOI | MR
[26] Ramani A., Grammaticos B., Hietarinta J., “Discrete versions of the Painlevé equations”, Phys. Rev. Lett., 67 (1991), 1829–1832 | DOI | MR | Zbl
[27] Schensted C., “Longest increasing and decreasing subsequences”, Canadian J. Math., 13 (1961), 179–191 | DOI | MR | Zbl
[28] Tracy C.A., Widom H., “Fredholm determinants, differential equations and matrix models”, Comm. Math. Phys., 163 (1994), 33–72, arXiv: hep-th/9306042 | DOI | MR | Zbl
[29] Tracy C.A., Widom H., “Level-spacing distributions and the Airy kernel”, Comm. Math. Phys., 159 (1994), 151–174, arXiv: hep-th/9211141 | DOI | MR | Zbl