@article{SIGMA_2023_19_a27,
author = {Anna Fino and Gueo Grantcharov},
title = {CYT and {SKT} {Metrics} on {Compact} {Semi-Simple} {Lie} {Groups}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2023},
volume = {19},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a27/}
}
Anna Fino; Gueo Grantcharov. CYT and SKT Metrics on Compact Semi-Simple Lie Groups. Symmetry, integrability and geometry: methods and applications, Tome 19 (2023). http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a27/
[1] Alekseevskii D.V., Perelomov A.M., “Invariant Kähler–Einstein metrics on compact homogeneous spaces”, Funct. Anal. Appl., 20 (1986), 171–182 | DOI | MR | Zbl
[2] Apostolov V., Fu X., Streets J., Ustinovskiy Yu., The generalized Kähler Calabi–Yau problem, arXiv: 2211.09104 | MR
[3] Arvanitoyeorgos A., An introduction to Lie groups and the geometry of homogeneous spaces, Stud. Math. Libr., 22, Amer. Math. Soc., Providence, RI, 2003 | DOI | MR | Zbl
[4] Barbaro G., “Global stability of the Pluriclosed flow on compact simply-connected simple Lie groups of rank two”, Transform. Groups, 2022, arXiv: 2202.13199 | DOI
[5] Bordemann M., Forger M., Römer H., “Homogeneous Kähler manifolds: paving the way towards new supersymmetric sigma models”, Comm. Math. Phys., 102 (1986), 605–647 | DOI | MR | Zbl
[6] Chevalley C., “Invariants of finite groups generated by reflections”, Amer. J. Math., 77 (1955), 778–782 | DOI | MR | Zbl
[7] Fino A., Grantcharov G., “Properties of manifolds with skew-symmetric torsion and special holonomy”, Adv. Math., 189 (2004), 439–450, arXiv: math.DG/0302358 | DOI | MR | Zbl
[8] Fino A., Grantcharov G., Vezzoni L., “Astheno–Kähler and balanced structures on fibrations”, Int. Math. Res. Not., 2019 (2019), 7093–7117, arXiv: 1608.06743 | DOI | MR | Zbl
[9] Garcia-Fernandez M., Jordan J., Streets J., Non-Kähler Calabi–Yau geometry and pluriclosed flow, arXiv: 2106.13716
[10] Garcia-Fernandez M., Streets J., Generalized Ricci flow, Univ. Lecture Ser., 76, Amer. Math. Soc., Providence, RI, 2021 | DOI | MR | Zbl
[11] Gates Jr. S.J., Hull C.M., Roček M., “Twisted multiplets and new supersymmetric nonlinear $\sigma$-models”, Nuclear Phys. B, 248 (1984), 157–186 | DOI | MR
[12] Gauduchon P., “Hermitian connections and Dirac operators”, Boll. Un. Mat. Ital. B, 11 (1997), 257–288 | MR | Zbl
[13] Grantcharov D., Grantcharov G., Poon Y.S., “Calabi–Yau connections with torsion on toric bundles”, J. Differential Geom., 78 (2008), 13–32, arXiv: math.DG/0306207 | DOI | MR | Zbl
[14] Grantcharov G., “Geometry of compact complex homogeneous spaces with vanishing first Chern class”, Adv. Math., 226 (2011), 3136–3159, arXiv: 0905.0040 | DOI | MR | Zbl
[15] Gutowski J., Ivanov S., Papadopoulos G., “Deformations of generalized calibrations and compact non-Kähler manifolds with vanishing first Chern class”, Asian J. Math., 7 (2003), 39–79, arXiv: math.DG/0205012 | DOI | MR
[16] Howe P.S., Papadopoulos G., “Further remarks on the geometry of two-dimensional nonlinear $\sigma$ models”, Classical Quantum Gravity, 5 (1988), 1647–1661 | DOI | MR | Zbl
[17] Hull C.M., “Compactifications of the heterotic superstring”, Phys. Lett. B, 178 (1986), 357–364 | DOI | MR
[18] Koszul J.L., “Sur la forme hermitienne canonique des espaces homogènes complexes”, Canadian J. Math., 7 (1955), 562–576 | DOI | MR | Zbl
[19] Latorre A., Ugarte L., Villacampa R., Frölicher spectral sequence of compact complex manifolds with special Hermitian metrics, arXiv: 2207.14669
[20] Pittie H.V., “The Dolbeault-cohomology ring of a compact, even-dimensional Lie group”, Proc. Indian Acad. Sci. Math. Sci., 98 (1988), 117–152 | DOI | MR | Zbl
[21] Pittie H.V., “The nondegeneration of the Hodge–de Rham spectral sequence”, Bull. Amer. Math. Soc. (N.S.), 20 (1989), 19–22 | DOI | MR | Zbl
[22] Podestá F., Raffero A., “Bismut Ricci flat manifolds with symmetries”, Proc. Roy. Soc. Edinburgh Sect. A (to appear) , arXiv: 2202.00417 | DOI | MR
[23] Podestá F., Raffero A., “Infinite families of homogeneous Bismut Ricci flat manifolds”, Commun. Contemp. Math. (to appear) , arXiv: 2205.12690 | DOI
[24] Samelson H., “A class of complex-analytic manifolds”, Portugal. Math., 12 (1953), 129–132 | MR | Zbl
[25] Strominger A., “Superstrings with torsion”, Nuclear Phys. B, 274 (1986), 253–284 | DOI | MR
[26] Swann A., “Twisting Hermitian and hypercomplex geometries”, Duke Math. J., 155 (2010), 403–431 | DOI | MR | Zbl
[27] von Steinkirch M., Introduction to group theory for physicists, State University of New York at Stony Brook http://www.astro.sunysb.edu/steinkirch/books/group.pdf
[28] Wang H.-C., “Closed manifolds with homogeneous complex structure”, Amer. J. Math., 76 (1954), 1–32 | DOI | MR | Zbl