Yamabe Invariants, Homogeneous Spaces, and Rational Complex Surfaces
Symmetry, integrability and geometry: methods and applications, Tome 19 (2023) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The Yamabe invariant is a diffeomorphism invariant of smooth compact manifolds that arises from the normalized Einstein–Hilbert functional. This article highlights the manner in which one compelling open problem regarding the Yamabe invariant appears to be closely tied to static potentials and the first eigenvalue of the Laplacian.
Keywords: scalar curvature, Yamabe problem, diffeomorphism invariant.
Mots-clés : conformal structure
@article{SIGMA_2023_19_a26,
     author = {Claude LeBrun},
     title = {Yamabe {Invariants,} {Homogeneous} {Spaces,} and {Rational} {Complex} {Surfaces}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2023},
     volume = {19},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a26/}
}
TY  - JOUR
AU  - Claude LeBrun
TI  - Yamabe Invariants, Homogeneous Spaces, and Rational Complex Surfaces
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2023
VL  - 19
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a26/
LA  - en
ID  - SIGMA_2023_19_a26
ER  - 
%0 Journal Article
%A Claude LeBrun
%T Yamabe Invariants, Homogeneous Spaces, and Rational Complex Surfaces
%J Symmetry, integrability and geometry: methods and applications
%D 2023
%V 19
%U http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a26/
%G en
%F SIGMA_2023_19_a26
Claude LeBrun. Yamabe Invariants, Homogeneous Spaces, and Rational Complex Surfaces. Symmetry, integrability and geometry: methods and applications, Tome 19 (2023). http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a26/

[1] Albanese M., LeBrun C., Kodaira dimension and the Yamabe problem, II, arXiv: 2106.14333

[2] Ambrozio L., “On static three-manifolds with positive scalar curvature”, J. Differential Geom., 107 (2017), 1–45, arXiv: 1503.03803 | DOI | MR | Zbl

[3] Aubin T., “Équations différentielles non linéaires et problème de Yamabe concernant la courbure scalaire”, J. Math. Pures Appl., 55 (1976), 269–296 | MR | Zbl

[4] Besse A.L., “Einstein manifolds”, Ergeb. Math. Grenzgeb. (3), 10 (1987), Springer, Berlin | DOI | MR | Zbl

[5] Böhm C., Wang M., Ziller W., “A variational approach for compact homogeneous Einstein manifolds”, Geom. Funct. Anal., 14 (2004), 681–733 | DOI | MR | Zbl

[6] Bourguignon J.-P., “Une stratification de l'espace des structures riemanniennes”, Compositio Math., 30 (1975), 1–41 | MR | Zbl

[7] Chen X., LeBrun C., Weber B., “On conformally Kähler, Einstein manifolds”, J. Amer. Math. Soc., 21 (2008), 1137–1168, arXiv: 0705.0710 | DOI | MR | Zbl

[8] Corvino J., “Scalar curvature deformation and a gluing construction for the Einstein constraint equations”, Comm. Math. Phys., 214 (2000), 137–189 | DOI | MR | Zbl

[9] Fischer A.E., Marsden J.E., “Manifolds of Riemannian metrics with prescribed scalar curvature”, Bull. Amer. Math. Soc., 80 (1974), 479–484 | DOI | MR | Zbl

[10] Gursky M.J., “The Weyl functional, de Rham cohomology, and Kähler–Einstein metrics”, Ann. of Math., 148 (1998), 315–337 | DOI | MR | Zbl

[11] Gursky M.J., LeBrun C., “Yamabe invariants and ${\rm Spin}^c$ structures”, Geom. Funct. Anal., 8 (1998), 965–977, arXiv: dg-ga/9708002 | DOI | MR | Zbl

[12] Kobayashi O., “Scalar curvature of a metric with unit volume”, Math. Ann., 279 (1987), 253–265 | DOI | MR | Zbl

[13] Lafontaine J., “Sur la géométrie d'une généralisation de l'équation différentielle d'{O}bata”, J. Math. Pures Appl., 62 (1983), 63–72 | MR | Zbl

[14] LeBrun C., “Four-manifolds without Einstein metrics”, Math. Res. Lett., 3 (1996), 133–147, arXiv: dg-ga/9511015 | DOI | MR | Zbl

[15] LeBrun C., “Yamabe constants and the perturbed Seiberg–Witten equations”, Comm. Anal. Geom., 5 (1997), 535–553, arXiv: dg-ga/9605009 | DOI | MR | Zbl

[16] LeBrun C., “Kodaira dimension and the Yamabe problem”, Comm. Anal. Geom., 7 (1999), 133–156, arXiv: dg-ga/9702012 | DOI | MR | Zbl

[17] LeBrun C., “On Einstein, Hermitian 4-manifolds”, J. Differential Geom., 90 (2012), 277–302, arXiv: 1010.0238 | DOI | MR | Zbl

[18] Lichnerowicz A., Géométrie des groupes de transformations, Travaux Rech. Math., 3, Dunod, Paris, 1958 | MR

[19] Obata M., “The conjectures on conformal transformations of Riemannian manifolds”, J. Differential Geometry, 6 (1971), 247–258 | DOI | MR | Zbl

[20] Odaka Y., Spotti C., Sun S., “Compact moduli spaces of del Pezzo surfaces and Kähler–Einstein metrics”, J. Differential Geom., 102 (2016), 127–172, arXiv: 1210.0858 | DOI | MR | Zbl

[21] Page D., “A compact rotating gravitational instanton”, Phys. Lett. B, 79 (1978), 235–238 | DOI

[22] Schoen R., “Conformal deformation of a Riemannian metric to constant scalar curvature”, J. Differential Geom., 20 (1984), 479–495 | DOI | MR | Zbl

[23] Schoen R.M., “Variational theory for the total scalar curvature functional for Riemannian metrics and related topics”, Topics in Calculus of Variations (Montecatini Terme, 1987), Lecture Notes in Math., 1365, Springer, Berlin, 1989, 120–154 | DOI | MR

[24] Seshadri H., “On Einstein four-manifolds with $S^1$-actions”, Math. Z., 247 (2004), 487–503 | DOI | MR | Zbl

[25] Tian G., Yau S.-T., “Kähler–Einstein metrics on complex surfaces with $C_1>0$”, Comm. Math. Phys., 112 (1987), 175–203 | DOI | MR | Zbl

[26] Trudinger N.S., “Remarks concerning the conformal deformation of riemannian structures on compact manifolds”, Ann. Scuola Norm. Sup. Pisa, 22 (1968), 265–274 | MR | Zbl

[27] Yamabe H., “On a deformation of Riemannian structures on compact manifolds”, Osaka Math. J., 12 (1960), 21–37 | MR | Zbl