The $B_2$ Harmonic Oscillator with Reflections and Superintegrability
Symmetry, integrability and geometry: methods and applications, Tome 19 (2023) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The two-dimensional quantum harmonic oscillator is modified with reflection terms associated with the action of the Coxeter group $B_{2}$, which is the symmetry group of the square. The angular momentum operator is also modified with reflections. The wavefunctions are known to be built up from Jacobi and Laguerre polynomials. This paper introduces a fourth-order differential-difference operator commuting with the Hamiltonian but not with the angular momentum operator; a specific instance of superintegrability. The action of the operator on the usual orthogonal basis of wavefunctions is explicitly described. The wavefunctions are classified according to the representations of the group: four of degree one and one of degree two. The identity representation encompasses the wavefunctions invariant under the group. The paper begins with a short discussion of the modified Hamiltonians associated to finite reflection groups, and related raising and lowering operators. In particular, the Hamiltonian for the symmetric groups describes the Calogero–Sutherland model of identical particles on the line with harmonic confinement.
Keywords: Dunkl harmonic oscillator, dihedral symmetry, superintegrability, Jacobi polynomials.
Mots-clés : Laguerre polynomials
@article{SIGMA_2023_19_a24,
     author = {Charles F. Dunkl},
     title = {The $B_2$ {Harmonic} {Oscillator} with {Reflections} and {Superintegrability}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2023},
     volume = {19},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a24/}
}
TY  - JOUR
AU  - Charles F. Dunkl
TI  - The $B_2$ Harmonic Oscillator with Reflections and Superintegrability
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2023
VL  - 19
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a24/
LA  - en
ID  - SIGMA_2023_19_a24
ER  - 
%0 Journal Article
%A Charles F. Dunkl
%T The $B_2$ Harmonic Oscillator with Reflections and Superintegrability
%J Symmetry, integrability and geometry: methods and applications
%D 2023
%V 19
%U http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a24/
%G en
%F SIGMA_2023_19_a24
Charles F. Dunkl. The $B_2$ Harmonic Oscillator with Reflections and Superintegrability. Symmetry, integrability and geometry: methods and applications, Tome 19 (2023). http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a24/

[1] Baker T.H., Forrester P.J., “The Calogero–Sutherland model and generalized classical polynomials”, Comm. Math. Phys., 188 (1997), 175–216, arXiv: solv-int/9608004 | DOI | MR | Zbl

[2] Dunkl C.F., “Differential-difference operators associated to reflection groups”, Trans. Amer. Math. Soc., 311 (1989), 167–183 | DOI | MR | Zbl

[3] Dunkl C.F., “Computing with differential-difference operators”, J. Symbolic Comput., 28 (1999), 819–826 | DOI | MR | Zbl

[4] Dunkl C.F., Xu Y., Orthogonal polynomials of several variables, Encyclopedia Math. Appl., 155, 2nd ed., Cambridge University Press, Cambridge, 2014 | DOI | MR | Zbl

[5] Feigin M., “Generalized Calogero–Moser systems from rational Cherednik algebras”, Selecta Math. (N.S.), 18 (2012), 253–281, arXiv: 0809.3487 | DOI | MR | Zbl

[6] Feigin M., Hakobyan T., “On Dunkl angular momenta algebra”, J. High Energy Phys., 2015:11 (2015), 107, 23 pp., arXiv: 1409.2480 | DOI | MR

[7] Lapointe L., Vinet L., “Exact operator solution of the Calogero–Sutherland model”, Comm. Math. Phys., 178 (1996), 425–452, arXiv: q-alg/9509003 | DOI | MR | Zbl

[8] Lassalle M., “Polynômes de Hermite généralisés”, C. R. Acad. Sci. Paris Sér. I Math., 313, 1991, 579–582 | MR | Zbl

[9] Quesne C., “Exchange operator formalism for an infinite family of solvable and integrable quantum systems on a plane”, Modern Phys. Lett. A, 25 (2010), 15–24, arXiv: 0910.2151 | DOI | MR | Zbl

[10] Tremblay F., Turbiner A.V., Winternitz P., “An infinite family of solvable and integrable quantum systems on a plane”, J. Phys. A, 42 (2009), 242001, 10 pp., arXiv: 0904.0738 | DOI | MR | Zbl

[11] Tremblay F., Turbiner A.V., Winternitz P., “Periodic orbits for an infinite family of classical superintegrable systems”, J. Phys. A, 43 (2010), 015202, 14 pp., arXiv: 0910.0299 | DOI | MR | Zbl