Mots-clés : Laguerre polynomials
@article{SIGMA_2023_19_a24,
author = {Charles F. Dunkl},
title = {The $B_2$ {Harmonic} {Oscillator} with {Reflections} and {Superintegrability}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2023},
volume = {19},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a24/}
}
Charles F. Dunkl. The $B_2$ Harmonic Oscillator with Reflections and Superintegrability. Symmetry, integrability and geometry: methods and applications, Tome 19 (2023). http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a24/
[1] Baker T.H., Forrester P.J., “The Calogero–Sutherland model and generalized classical polynomials”, Comm. Math. Phys., 188 (1997), 175–216, arXiv: solv-int/9608004 | DOI | MR | Zbl
[2] Dunkl C.F., “Differential-difference operators associated to reflection groups”, Trans. Amer. Math. Soc., 311 (1989), 167–183 | DOI | MR | Zbl
[3] Dunkl C.F., “Computing with differential-difference operators”, J. Symbolic Comput., 28 (1999), 819–826 | DOI | MR | Zbl
[4] Dunkl C.F., Xu Y., Orthogonal polynomials of several variables, Encyclopedia Math. Appl., 155, 2nd ed., Cambridge University Press, Cambridge, 2014 | DOI | MR | Zbl
[5] Feigin M., “Generalized Calogero–Moser systems from rational Cherednik algebras”, Selecta Math. (N.S.), 18 (2012), 253–281, arXiv: 0809.3487 | DOI | MR | Zbl
[6] Feigin M., Hakobyan T., “On Dunkl angular momenta algebra”, J. High Energy Phys., 2015:11 (2015), 107, 23 pp., arXiv: 1409.2480 | DOI | MR
[7] Lapointe L., Vinet L., “Exact operator solution of the Calogero–Sutherland model”, Comm. Math. Phys., 178 (1996), 425–452, arXiv: q-alg/9509003 | DOI | MR | Zbl
[8] Lassalle M., “Polynômes de Hermite généralisés”, C. R. Acad. Sci. Paris Sér. I Math., 313, 1991, 579–582 | MR | Zbl
[9] Quesne C., “Exchange operator formalism for an infinite family of solvable and integrable quantum systems on a plane”, Modern Phys. Lett. A, 25 (2010), 15–24, arXiv: 0910.2151 | DOI | MR | Zbl
[10] Tremblay F., Turbiner A.V., Winternitz P., “An infinite family of solvable and integrable quantum systems on a plane”, J. Phys. A, 42 (2009), 242001, 10 pp., arXiv: 0904.0738 | DOI | MR | Zbl
[11] Tremblay F., Turbiner A.V., Winternitz P., “Periodic orbits for an infinite family of classical superintegrable systems”, J. Phys. A, 43 (2010), 015202, 14 pp., arXiv: 0910.0299 | DOI | MR | Zbl