@article{SIGMA_2023_19_a23,
author = {Mari\'an Fecko},
title = {Some {Useful} {Operators} on {Differential} {Forms} on {Galilean} and {Carrollian} {Spacetimes}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2023},
volume = {19},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a23/}
}
Marián Fecko. Some Useful Operators on Differential Forms on Galilean and Carrollian Spacetimes. Symmetry, integrability and geometry: methods and applications, Tome 19 (2023). http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a23/
[1] Bamberg P., Sternberg S., A course in mathematics for students of physics, v. 1, Cambridge University Press, Cambridge, 1988 | DOI | MR | Zbl
[2] Banerjee K., Basu R., Mehra A., Mohan A., Sharma A., “Interacting conformal Carrollian theories: cues from electrodynamics”, Phys. Rev. D, 103 (2021), 105001, 19 pp., arXiv: 2008.02829 | DOI | MR
[3] Ciambelli L., Leigh R.G., Marteau C., Petropoulos P.M., “Carroll structures, null geometry, and conformal isometries”, Phys. Rev. D, 100 (2019), 046010, 11 pp., arXiv: 1905.02221 | DOI | MR
[4] Crampin M., Pirani F.A.E., Applicable differential geometry, London Math. Soc. Lecture Note Ser., 59, Cambridge University Press, Cambridge, 1986 | DOI | MR | Zbl
[5] Duval C., Gibbons G.W., Horvathy P.A., Zhang P.M., “Carroll versus Newton and Galilei: two dual non-Einsteinian concepts of time”, Classical Quantum Gravity, 31 (2014), 085016, 24 pp., arXiv: 1402.0657 | DOI | MR | Zbl
[6] Fecko M., Differential geometry and Lie groups for physicists, Cambridge University Press, Cambridge, 2006 | DOI | MR | Zbl
[7] Fecko M., Galilean and Carrollian invariant Hodge star operators, arXiv: 2206.09788
[8] Figueroa-O'Farrill J., On the intrinsic torsion of spacetime structures, arXiv: 2009.01948
[9] Figueroa-O'Farrill J., Grassie R., Prohazka S., “Geometry and BMS Lie algebras of spatially isotropic homogeneous spacetimes”, J. High Energy Phys., 2019:8 (2019), 119, 92 pp., arXiv: 2009.01948 | DOI | MR | Zbl
[10] Frankel T., The geometry of physics. An introduction, 2nd ed., Cambridge University Press, Cambridge, 2003 | DOI | MR
[11] Göckeler M., Schücker T., Differential geometry, gauge theories, and gravity, Cambridge Monogr. Math. Phys., Cambridge University Press, Cambridge, 1987 | DOI | MR | Zbl
[12] Grassie R., Beyond Lorentzian symmetry, Ph.D. Thesis, University of Edinburgh, 2021, arXiv: 2107.09495 | DOI
[13] Hansen D., Beyond Lorentzian physics, Ph.D. Thesis, ETH Zürich, 2021 | DOI
[14] Henneaux M., Salgado-Rebolledo P., “Carroll contractions of Lorentz-invariant theories”, J. High Energy Phys., 2021:11 (2021), 180, 28 pp., arXiv: 2109.06708 | DOI | MR
[15] Künzle H.P., “Galilei and Lorentz structures on space-time: comparison of the corresponding geometry and physics”, Ann. Inst. H. Poincaré Sect. A (N.S.), 17, 1972, 337–362 | MR
[16] Lévy-Leblond J.-M., “Une nouvelle limite non-relativiste du groupe de Poincaré”, Ann. Inst. H. Poincaré Sect. A (N.S.), 3, 1965, 1–12 | MR | Zbl
[17] Morand K., “Embedding Galilean and Carrollian geometries. I Gravitational waves”, J. Math. Phys., 61 (2020), 082502, 43 pp., arXiv: 1811.12681 | DOI | MR | Zbl
[18] Schutz B.F., Geometrical methods of mathematical physics, Cambridge University Press, Cambridge, 1980 | DOI | Zbl
[19] Sternberg S., Lectures on differential geometry, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1964 | MR | Zbl
[20] Trautman A., “Sur la théorie newtonienne de la gravitation”, C. R. Acad. Sci. Paris, 257 (1963), 617–620 | MR | Zbl
[21] Trautman A., “Comparison of Newtonian and relativistic theories of space-time”, Perspectives in Geometry, Essays in Honor of V Hlavatý, Indiana University Press, Bloomington, Ind., 1966, 413–425 | MR
[22] Trautman A., Differential geometry for physicists. Stony Brook lectures, Monogr. Textb. Phys. Sci., 2, Bibliopolis, Naples, 1984 | MR | Zbl
[23] Van den Bleeken D., Yunus {Ç}, “Newton–Cartan, Galileo–Maxwell and Kaluza–Klein”, Classical Quantum Gravity, 33 (2016), 137002, 19 pp., arXiv: 1512.03799 | DOI | MR | Zbl