Some Useful Operators on Differential Forms on Galilean and Carrollian Spacetimes
Symmetry, integrability and geometry: methods and applications, Tome 19 (2023) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Differential forms on Lorentzian spacetimes is a well-established subject. On Galilean and Carrollian spacetimes it does not seem to be quite so. This may be due to the absence of Hodge star operator. There are, however, potentially useful analogs of Hodge star operator also on the last two spacetimes, namely intertwining operators between corresponding representations on forms. Their use could perhaps make differential forms as attractive tool for physics on Galilean and Carrollian spacetimes as forms on Lorentzian spacetimes definitely proved to be.
Keywords: Hodge star operator, Galilean spacetime, Carrollian spacetime, intertwining operator.
@article{SIGMA_2023_19_a23,
     author = {Mari\'an Fecko},
     title = {Some {Useful} {Operators} on {Differential} {Forms} on {Galilean} and {Carrollian} {Spacetimes}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2023},
     volume = {19},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a23/}
}
TY  - JOUR
AU  - Marián Fecko
TI  - Some Useful Operators on Differential Forms on Galilean and Carrollian Spacetimes
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2023
VL  - 19
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a23/
LA  - en
ID  - SIGMA_2023_19_a23
ER  - 
%0 Journal Article
%A Marián Fecko
%T Some Useful Operators on Differential Forms on Galilean and Carrollian Spacetimes
%J Symmetry, integrability and geometry: methods and applications
%D 2023
%V 19
%U http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a23/
%G en
%F SIGMA_2023_19_a23
Marián Fecko. Some Useful Operators on Differential Forms on Galilean and Carrollian Spacetimes. Symmetry, integrability and geometry: methods and applications, Tome 19 (2023). http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a23/

[1] Bamberg P., Sternberg S., A course in mathematics for students of physics, v. 1, Cambridge University Press, Cambridge, 1988 | DOI | MR | Zbl

[2] Banerjee K., Basu R., Mehra A., Mohan A., Sharma A., “Interacting conformal Carrollian theories: cues from electrodynamics”, Phys. Rev. D, 103 (2021), 105001, 19 pp., arXiv: 2008.02829 | DOI | MR

[3] Ciambelli L., Leigh R.G., Marteau C., Petropoulos P.M., “Carroll structures, null geometry, and conformal isometries”, Phys. Rev. D, 100 (2019), 046010, 11 pp., arXiv: 1905.02221 | DOI | MR

[4] Crampin M., Pirani F.A.E., Applicable differential geometry, London Math. Soc. Lecture Note Ser., 59, Cambridge University Press, Cambridge, 1986 | DOI | MR | Zbl

[5] Duval C., Gibbons G.W., Horvathy P.A., Zhang P.M., “Carroll versus Newton and Galilei: two dual non-Einsteinian concepts of time”, Classical Quantum Gravity, 31 (2014), 085016, 24 pp., arXiv: 1402.0657 | DOI | MR | Zbl

[6] Fecko M., Differential geometry and Lie groups for physicists, Cambridge University Press, Cambridge, 2006 | DOI | MR | Zbl

[7] Fecko M., Galilean and Carrollian invariant Hodge star operators, arXiv: 2206.09788

[8] Figueroa-O'Farrill J., On the intrinsic torsion of spacetime structures, arXiv: 2009.01948

[9] Figueroa-O'Farrill J., Grassie R., Prohazka S., “Geometry and BMS Lie algebras of spatially isotropic homogeneous spacetimes”, J. High Energy Phys., 2019:8 (2019), 119, 92 pp., arXiv: 2009.01948 | DOI | MR | Zbl

[10] Frankel T., The geometry of physics. An introduction, 2nd ed., Cambridge University Press, Cambridge, 2003 | DOI | MR

[11] Göckeler M., Schücker T., Differential geometry, gauge theories, and gravity, Cambridge Monogr. Math. Phys., Cambridge University Press, Cambridge, 1987 | DOI | MR | Zbl

[12] Grassie R., Beyond Lorentzian symmetry, Ph.D. Thesis, University of Edinburgh, 2021, arXiv: 2107.09495 | DOI

[13] Hansen D., Beyond Lorentzian physics, Ph.D. Thesis, ETH Zürich, 2021 | DOI

[14] Henneaux M., Salgado-Rebolledo P., “Carroll contractions of Lorentz-invariant theories”, J. High Energy Phys., 2021:11 (2021), 180, 28 pp., arXiv: 2109.06708 | DOI | MR

[15] Künzle H.P., “Galilei and Lorentz structures on space-time: comparison of the corresponding geometry and physics”, Ann. Inst. H. Poincaré Sect. A (N.S.), 17, 1972, 337–362 | MR

[16] Lévy-Leblond J.-M., “Une nouvelle limite non-relativiste du groupe de Poincaré”, Ann. Inst. H. Poincaré Sect. A (N.S.), 3, 1965, 1–12 | MR | Zbl

[17] Morand K., “Embedding Galilean and Carrollian geometries. I Gravitational waves”, J. Math. Phys., 61 (2020), 082502, 43 pp., arXiv: 1811.12681 | DOI | MR | Zbl

[18] Schutz B.F., Geometrical methods of mathematical physics, Cambridge University Press, Cambridge, 1980 | DOI | Zbl

[19] Sternberg S., Lectures on differential geometry, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1964 | MR | Zbl

[20] Trautman A., “Sur la théorie newtonienne de la gravitation”, C. R. Acad. Sci. Paris, 257 (1963), 617–620 | MR | Zbl

[21] Trautman A., “Comparison of Newtonian and relativistic theories of space-time”, Perspectives in Geometry, Essays in Honor of V Hlavatý, Indiana University Press, Bloomington, Ind., 1966, 413–425 | MR

[22] Trautman A., Differential geometry for physicists. Stony Brook lectures, Monogr. Textb. Phys. Sci., 2, Bibliopolis, Naples, 1984 | MR | Zbl

[23] Van den Bleeken D., Yunus {Ç}, “Newton–Cartan, Galileo–Maxwell and Kaluza–Klein”, Classical Quantum Gravity, 33 (2016), 137002, 19 pp., arXiv: 1512.03799 | DOI | MR | Zbl