Mots-clés : equivariant index, cusp.
@article{SIGMA_2023_19_a22,
author = {Peter Hochs and Hang Wang},
title = {Spectral {Asymmetry} and {Index} {Theory} on {Manifolds} with {Generalised} {Hyperbolic} {Cusps}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2023},
volume = {19},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a22/}
}
TY - JOUR AU - Peter Hochs AU - Hang Wang TI - Spectral Asymmetry and Index Theory on Manifolds with Generalised Hyperbolic Cusps JO - Symmetry, integrability and geometry: methods and applications PY - 2023 VL - 19 UR - http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a22/ LA - en ID - SIGMA_2023_19_a22 ER -
Peter Hochs; Hang Wang. Spectral Asymmetry and Index Theory on Manifolds with Generalised Hyperbolic Cusps. Symmetry, integrability and geometry: methods and applications, Tome 19 (2023). http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a22/
[1] Anghel N., “Remark on Callias' index theorem”, Rep. Math. Phys., 28 (1989), 1–6 | DOI | MR | Zbl
[2] Anghel N., “An abstract index theorem on noncompact Riemannian manifolds”, Houston J. Math., 19 (1993), 223–237 | MR | Zbl
[3] Anghel N., “On the index of Callias-type operators”, Geom. Funct. Anal., 3 (1993), 431–438 | DOI | MR | Zbl
[4] Anghel N., “Fredholmness vs. spectral discreteness for first-order differential operators”, Proc. Amer. Math. Soc., 144 (2016), 693–701 | DOI | MR | Zbl
[5] Atiyah M.F., Elliptic operators and compact groups, Lecture Notes in Math., 401, Springer, Berlin, 1974 | DOI | MR | Zbl
[6] Atiyah M.F., Patodi V.K., Singer I.M., “Spectral asymmetry and Riemannian geometry. I”, Math. Proc. Cambridge Philos. Soc., 77 (1975), 43–69 | DOI | MR | Zbl
[7] Atiyah M.F., Singer I.M., “The index of elliptic operators. III”, Ann. of Math., 87 (1968), 546–604 | DOI | MR | Zbl
[8] Baier P.D., “An index theorem for open manifolds whose ends are warped products”, Abh. Math. Sem. Univ. Hamburg, 72 (2002), 269–282 | DOI | MR | Zbl
[9] Ballmann W., Brüning J., “On the spectral theory of surfaces with cusps”, Geometric Analysis and Nonlinear Partial Differential Equations, Springer, Berlin, 2003, 13–37 | DOI | MR | Zbl
[10] Ballmann W., Brüning J., Carron G., “Index theorems on manifolds with straight ends”, Compos. Math., 148 (2012), 1897–1968, arXiv: 1011.2290 | DOI | MR | Zbl
[11] Bär C., “The Dirac operator on hyperbolic manifolds of finite volume”, J. Differential Geom., 54 (2000), 439–488, arXiv: math.DG/0010233 | DOI | MR | Zbl
[12] Bär C., Ballmann W., “Boundary value problems for elliptic differential operators of first order”, Surv. Differ. Geom., 1, Int. Press, Boston, MA, 2012, 1–78, arXiv: 1101.1196 | DOI | MR | Zbl
[13] Barbasch D., Moscovici H., “$L^{2}$-index and the Selberg trace formula”, J. Funct. Anal., 53 (1983), 151–201 | DOI | MR | Zbl
[14] Baum P., Connes A., Higson N., “Classifying space for proper actions and $K$-theory of group $C^\ast$-algebras”, $C^\ast$-Algebras: 1943–1993 (San Antonio, TX, 1993), Contemp. Math., 167, Amer. Math. Soc., Providence, RI, 1994, 240–291 | DOI | MR
[15] Berline N., Getzler E., Vergne M., Heat kernels and Dirac operators, Grundlehren Text Editions, Springer, Berlin, 2004 | MR | Zbl
[16] Bott R., Seeley R., “Some remarks on the paper of Callias: “Axial anomalies and index theorems on open spaces””, Comm. Math. Phys., 62 (1978), 235–245 | DOI | MR | Zbl
[17] Braverman M., “Index theorem for equivariant Dirac operators on noncompact manifolds”, $K$-Theory, 27 (2002), 61–101 | DOI | MR | Zbl
[18] Braverman M., Maschler G., “Equivariant APS index for Virac operators of non-product type near the boundary”, Indiana Univ. Math. J., 68 (2019), 435–501 | DOI | MR | Zbl
[19] Bunke U., “A $K$-theoretic relative index theorem and Callias-type Dirac operators”, Math. Ann., 303 (1995), 241–279 | DOI | MR | Zbl
[20] Callias C., “Axial anomalies and index theorems on open spaces”, Comm. Math. Phys., 62 (1978), 213–234 | DOI | MR | Zbl
[21] Donnelly H., “Eta invariants for $G$-spaces”, Indiana Univ. Math. J., 27 (1978), 889–918 | DOI | MR | Zbl
[22] Gilkey P.B., “On the index of geometrical operators for Riemannian manifolds with boundary”, Adv. Math., 102 (1993), 129–183 | DOI | MR | Zbl
[23] Gromov M., Lawson Jr. H.B., “Positive scalar curvature and the Dirac operator on complete Riemannian manifolds”, Inst. Hautes Études Sci. Publ. Math., 58 (1983), 83–196 | DOI | MR | Zbl
[24] Grubb G., “Heat operator trace expansions and index for general Atiyah–Patodi–Singer boundary problems”, Comm. Partial Differential Equations, 17 (1992), 2031–2077 | DOI | MR | Zbl
[25] Hitchin N., “Harmonic spinors”, Adv. Math., 14 (1974), 1–55 | DOI | MR | Zbl
[26] Hochs P., Wang B.L., Wang H., “An equivariant Atiyah–Patodi–Singer index theorem for proper actions I: The index formula”, Int. Math. Res. Not., 2023 (2023), 3138–3193 | DOI | MR
[27] Hochs P., Wang H., An absolute version of the Gromov–Lawson relative index theorem, arXiv: 2110.00376
[28] Kucerovsky D., “A short proof of an index theorem”, Proc. Amer. Math. Soc., 129 (2001), 3729–3736 | DOI | MR | Zbl
[29] Levitan B.M., Sargsjan I.S., Sturm–Liouville and Dirac operators, Math. Appl. (Sov. Series), 59, Kluwer Academic Publishers Group, Dordrecht, 1991 | DOI | MR
[30] Lott J., “Delocalized $L^2$-invariants”, J. Funct. Anal., 169 (1999), 1–31, arXiv: dg-ga/9612003 | DOI | MR | Zbl
[31] Mazzeo R., Phillips R.S., “Hodge theory on hyperbolic manifolds”, Duke Math. J., 60 (1990), 509–559 | DOI | MR | Zbl
[32] Moroianu S., “Fibered cusp versus $d$-index theory”, Rend. Semin. Mat. Univ. Padova, 117, 2007, 193–203, arXiv: math.DG/0610723 | MR | Zbl
[33] Moscovici H., “$L^{2}$-index of elliptic operators on locally symmetric spaces of finite volume”, Operator Algebras and $K$-theory (San Francisco, Calif., 1981), Contemp. Math., 10, Amer. Math. Soc., Providence, R.I., 1982, 129–137 | DOI | MR
[34] Müller W., “Spectral theory for Riemannian manifolds with cusps and a related trace formula”, Math. Nachr., 111 (1983), 197–288 | DOI | MR | Zbl
[35] Müller W., Manifolds with cusps of rank one. Spectral theory and $L^2$-index theorem, Lecture Notes in Math., 1244, Springer, Berlin, 1987 | DOI | MR
[36] Nomizu K., Ozeki H., “The existence of complete Riemannian metrics”, Proc. Amer. Math. Soc., 12 (1961), 889–891 | DOI | MR | Zbl
[37] Reed M., Simon B., Methods of modern mathematical physics, v. II, Fourier analysis, self-adjointness, Academic Press, New York, 1975 | MR | Zbl
[38] Salomonsen G., “Geometric heat kernel coefficients for APS-type boundary conditions” (Saint-Jean-de-Monts, 1998), Journées “Équations aux Dérivées Partielles”, XI, Nantes Université, Nantes, 1998, 19 pp. | MR | Zbl
[39] Stern M., “$L^2$-index theorems on locally symmetric spaces”, Invent. Math., 96 (1989), 231–282 | DOI | MR | Zbl
[40] Stern M.A., $L^2$-index theorems on warped products, Ph.D. Thesis, Princeton University, 1984 | MR
[41] Titchmarsh E.C., Eigenfunction expansions associated with second-order differential equations, v. I, 2nd ed., Clarendon Press, Oxford, 1962 | MR | Zbl
[42] Vaillant B., Index- and spectral theory for manifolds with generalized fibred cusps, Bonner Mathematische Schriften, 344, Universität Bonn, Bonn, 2001, arXiv: math.DG/0102072 | MR | Zbl