Rank $4$ Nichols Algebras of Pale Braidings
Symmetry, integrability and geometry: methods and applications, Tome 19 (2023) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We classify finite GK-dimensional Nichols algebras $\mathscr{B}(V)$ of rank $4$ such that $V$ arises as a Yetter–Drinfeld module over an abelian group but it is not a direct sum of points and blocks.
Keywords: Hopf algebras, Nichols algebras, Gelfand–Kirillov dimension.
@article{SIGMA_2023_19_a20,
     author = {Nicol\'as Andruskiewitsch and Iv\'an Angiono and Mat{\'\i}as Moya Giusti},
     title = {Rank $4$ {Nichols} {Algebras} of {Pale} {Braidings}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2023},
     volume = {19},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a20/}
}
TY  - JOUR
AU  - Nicolás Andruskiewitsch
AU  - Iván Angiono
AU  - Matías Moya Giusti
TI  - Rank $4$ Nichols Algebras of Pale Braidings
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2023
VL  - 19
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a20/
LA  - en
ID  - SIGMA_2023_19_a20
ER  - 
%0 Journal Article
%A Nicolás Andruskiewitsch
%A Iván Angiono
%A Matías Moya Giusti
%T Rank $4$ Nichols Algebras of Pale Braidings
%J Symmetry, integrability and geometry: methods and applications
%D 2023
%V 19
%U http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a20/
%G en
%F SIGMA_2023_19_a20
Nicolás Andruskiewitsch; Iván Angiono; Matías Moya Giusti. Rank $4$ Nichols Algebras of Pale Braidings. Symmetry, integrability and geometry: methods and applications, Tome 19 (2023). http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a20/

[1] Andruskiewitsch N., “An introduction to Nichols algebras”, Quantization, Geometry and Noncommutative Structures in Mathematics and Physics, Math. Phys. Stud., Springer, Cham, 2017, 135–195 | DOI | MR | Zbl

[2] Andruskiewitsch N., “On pointed Hopf algebras over nilpotent groups”, Israel J. Math. (to appear) , arXiv: 2104.04789

[3] Andruskiewitsch N., Angiono I., “On Nichols algebras with generic braiding”, Modules and Comodules, Trends Math., Birkhäuser, Basel, 2008, 47–64, arXiv: math.QA/0703924 | DOI | MR | Zbl

[4] Andruskiewitsch N., Angiono I., “On finite dimensional Nichols algebras of diagonal type”, Bull. Math. Sci., 7 (2017), 353–573, arXiv: 1707.08387 | DOI | MR | Zbl

[5] Andruskiewitsch N., Angiono I., Heckenberger I., “On finite GK-dimensional Nichols algebras of diagonal type”, Tensor Categories and Hopf Algebras, Contemp. Math., 728, Amer. Math. Soc., Providence, RI, 2019, 1–23, arXiv: 1803.08804 | DOI | MR | Zbl

[6] Andruskiewitsch N., Angiono I., Heckenberger I., On finite GK-dimensional Nichols algebras over abelian groups, Mem. Amer. Math. Soc., 271, 2021, ix+125 pp., arXiv: 1606.02521 | DOI | MR

[7] Andruskiewitsch N., Heckenberger I., Schneider H. J., “The Nichols algebra of a semisimple Yetter–Drinfeld module”, Amer. J. Math., 132 (2010), 1493–1547, arXiv: 0803.2430 | MR | Zbl

[8] Andruskiewitsch N., Peña Pollastri H. M., “On the double of the (restricted) super Jordan plane”, New York J. Math., 28 (2022), 1596–1622, arXiv: 2008.01234 | MR

[9] Andruskiewitsch N., Sanmarco G., “Finite GK-dimensional pre-Nichols algebras of quantum linear spaces and of Cartan type”, Trans. Amer. Math. Soc. Ser. B, 8 (2021), 296–329, arXiv: 2002.11087 | DOI | MR | Zbl

[10] Andruskiewitsch N., Schneider H. J., “Pointed Hopf algebras”, New Directions in Hopf Algebras, Math. Sci. Res. Inst. Publ., 43, Cambridge University Press, Cambridge, 2002, 1–68, arXiv: math.QA/0110136 | DOI | MR | Zbl

[11] Angiono I., Campagnolo E., Sanmarco G., Finite GK-dimensional pre-Nichols algebras of super and standard type, arXiv: 2009.04863

[12] Angiono I., García Iglesias A., “On finite GK-dimensional Nichols algebras of diagonal type: rank 3 and Cartan type”, Publ. Mat. (to appear) , arXiv: 2106.10143 | MR

[13] Angiono I., García Iglesias A., Finite GK-dimensional Nichols algebras of diagonal type and finite root systems, arXiv: 2212.08169

[14] Brown K. A., Zhang J. J., “Survey on Hopf algebras of GK-dimension 1 and 2”, Hopf Algebras, Tensor Categories and Related Topics, Contemp. Math., 771, Amer. Math. Soc., Providence, RI, 2021, 43–62, arXiv: 2003.14251 | DOI | MR

[15] Graña M., “A freeness theorem for Nichols algebras”, J. Algebra, 231 (2000), 235–257 | DOI | MR | Zbl

[16] Heckenberger I., “Classification of arithmetic root systems”, Adv. Math., 220 (2009), 59–124, arXiv: math.QA/0605795 | DOI | MR | Zbl

[17] Heckenberger I., Schneider H. J., “Yetter–Drinfeld modules over bosonizations of dually paired Hopf algebras”, Adv. Math., 244 (2013), 354–394, arXiv: 1111.4673 | DOI | MR | Zbl

[18] Heckenberger I., Schneider H. J., Hopf algebras and root systems, Math. Surveys Monogr., 247, Amer. Math. Soc., Providence, RI, 2020 | DOI | MR | Zbl

[19] Krause G. R., Lenagan T. H., Growth of algebras and Gelfand–Kirillov dimension, Grad. Stud. Math., 22, Amer. Math. Soc., Providence, RI, 2000 | DOI | MR | Zbl

[20] Rosso M., “Quantum groups and quantum shuffles”, Invent. Math., 133 (1998), 399–416 | DOI | MR | Zbl

[21] Takeuchi M., “Survey of braided Hopf algebras”, New Trends in Hopf Algebra Theory (La Falda, 1999), Contemp. Math., 267, Amer. Math. Soc., Providence, RI, 2000, 301–323 | DOI | MR | Zbl

[22] Ufer S., “PBW bases for a class of braided Hopf algebras”, J. Algebra, 280 (2004), 84–119, arXiv: math.QA/0311504 | DOI | MR | Zbl