Higher Braidings of Diagonal Type
Symmetry, integrability and geometry: methods and applications, Tome 19 (2023) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Heckenberger introduced the Weyl groupoid of a finite-dimensional Nichols algebra of diagonal type. We replace the matrix of its braiding by a higher tensor and present a construction which yields further Weyl groupoids. Abelian cohomology theory gives evidence for the existence of a higher braiding associated to such a tensor.
Keywords: Nichols algebra, braiding
Mots-clés : Weyl groupoid.
@article{SIGMA_2023_19_a18,
     author = {Michael Cuntz and Tobias Ohrmann},
     title = {Higher {Braidings} of {Diagonal} {Type}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2023},
     volume = {19},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a18/}
}
TY  - JOUR
AU  - Michael Cuntz
AU  - Tobias Ohrmann
TI  - Higher Braidings of Diagonal Type
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2023
VL  - 19
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a18/
LA  - en
ID  - SIGMA_2023_19_a18
ER  - 
%0 Journal Article
%A Michael Cuntz
%A Tobias Ohrmann
%T Higher Braidings of Diagonal Type
%J Symmetry, integrability and geometry: methods and applications
%D 2023
%V 19
%U http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a18/
%G en
%F SIGMA_2023_19_a18
Michael Cuntz; Tobias Ohrmann. Higher Braidings of Diagonal Type. Symmetry, integrability and geometry: methods and applications, Tome 19 (2023). http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a18/

[1] Cuntz M., “Frieze patterns as root posets and affine triangulations”, European J. Combin., 42 (2014), 167–178, arXiv: 1307.7986 | DOI | MR | Zbl

[2] Cuntz M., Heckenberger I., “Weyl groupoids of rank two and continued fractions”, Algebra Number Theory, 3 (2009), 317–340, arXiv: 0807.0124 | DOI | MR | Zbl

[3] Cuntz M., Heckenberger I., “Weyl groupoids with at most three objects”, J. Pure Appl. Algebra, 213 (2009), 1112–1128, arXiv: 0805.1810 | DOI | MR | Zbl

[4] Cuntz M., Heckenberger I., “Finite Weyl groupoids”, J. Reine Angew. Math., 702 (2015), 77–108, arXiv: 1008.5291 | DOI | MR | Zbl

[5] Cuntz M., Lentner S., “A simplicial complex of Nichols algebras”, Math. Z., 285 (2017), 647–683, arXiv: 1503.08117 | DOI | MR | Zbl

[6] Eilenberg S., MacLane S., “Cohomology theory of Abelian groups and homotopy theory. I”, Proc. Nat. Acad. Sci. USA, 36 (1950), 443–447 | DOI | MR | Zbl

[7] Eilenberg S., MacLane S., “Cohomology theory of Abelian groups and homotopy theory. II”, Proc. Nat. Acad. Sci. USA, 36 (1950), 657–663 | DOI | MR | Zbl

[8] Etingof P., Gelaki S., Nikshych D., Ostrik V., Tensor categories, Math. Surveys Monogr., 205, Amer. Math. Soc., Providence, RI, 2015 | DOI | MR | Zbl

[9] Heckenberger I., “The Weyl groupoid of a Nichols algebra of diagonal type”, Invent. Math., 164 (2006), 175–188, arXiv: math.QA/0411477 | DOI | MR | Zbl

[10] Heckenberger I., “Classification of arithmetic root systems”, Adv. Math., 220 (2009), 59–124, arXiv: math.QA/0605795 | DOI | MR | Zbl

[11] Joseph A., “A generalization of the Gelfand–Kirillov conjecture”, Amer. J. Math., 99 (1977), 1151–1165 | DOI | MR | Zbl

[12] Kac V. G., Infinite-dimensional Lie algebras, 3rd ed., Cambridge University Press, Cambridge, 1990 | DOI | MR | Zbl

[13] Laugwitz R., Walton C., “Constructing non-semisimple modular categories with relative monoidal centers”, Int. Math. Res. Not., 2022 (2022), 15826–15868, arXiv: 2010.11872 | DOI | MR | Zbl

[14] MacLane S., “Cohomology theory of Abelian groups”, Proceedings of the International Congress of Mathematicians (Cambridge, Mass., 1950), v. 2, Amer. Math. Soc., Providence, R.I., 1952, 8–14 | MR

[15] Rosso M., “Quantum groups and quantum shuffles”, Invent. Math., 133 (1998), 399–416 | DOI | MR | Zbl