Differential Antisymmetric Infinitesimal Bialgebras, Coherent Derivations and Poisson Bialgebras
Symmetry, integrability and geometry: methods and applications, Tome 19 (2023) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We establish a bialgebra theory for differential algebras, called differential antisymmetric infinitesimal (ASI) bialgebras by generalizing the study of ASI bialgebras to the context of differential algebras, in which the derivations play an important role. They are characterized by double constructions of differential Frobenius algebras as well as matched pairs of differential algebras. Antisymmetric solutions of an analogue of associative Yang–Baxter equation in differential algebras provide differential ASI bialgebras, whereas in turn the notions of $\mathcal{O}$-operators of differential algebras and differential dendriform algebras are also introduced to produce the former. On the other hand, the notion of a coherent derivation on an ASI bialgebra is introduced as an equivalent structure of a differential ASI bialgebra. They include derivations on ASI bialgebras and the set of coherent derivations on an ASI bialgebra composes a Lie algebra which is the Lie algebra of the Lie group consisting of coherent automorphisms on this ASI bialgebra. Finally, we apply the study of differential ASI bialgebras to Poisson bialgebras, extending the construction of Poisson algebras from commutative differential algebras with two commuting derivations to the context of bialgebras, which is consistent with the well constructed theory of Poisson bialgebras. In particular, we construct Poisson bialgebras from differential Zinbiel algebras.
Keywords: differential algebra, antisymmetric infinitesimal bialgebra, associative Yang–Baxter equation, $\mathcal{O}$-operator, dendriform algebra
Mots-clés : Poisson bialgebra.
@article{SIGMA_2023_19_a17,
     author = {Yuanchang Lin and Xuguang Liu and Chengming Bai},
     title = {Differential {Antisymmetric} {Infinitesimal} {Bialgebras,} {Coherent} {Derivations} and {Poisson} {Bialgebras}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2023},
     volume = {19},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a17/}
}
TY  - JOUR
AU  - Yuanchang Lin
AU  - Xuguang Liu
AU  - Chengming Bai
TI  - Differential Antisymmetric Infinitesimal Bialgebras, Coherent Derivations and Poisson Bialgebras
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2023
VL  - 19
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a17/
LA  - en
ID  - SIGMA_2023_19_a17
ER  - 
%0 Journal Article
%A Yuanchang Lin
%A Xuguang Liu
%A Chengming Bai
%T Differential Antisymmetric Infinitesimal Bialgebras, Coherent Derivations and Poisson Bialgebras
%J Symmetry, integrability and geometry: methods and applications
%D 2023
%V 19
%U http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a17/
%G en
%F SIGMA_2023_19_a17
Yuanchang Lin; Xuguang Liu; Chengming Bai. Differential Antisymmetric Infinitesimal Bialgebras, Coherent Derivations and Poisson Bialgebras. Symmetry, integrability and geometry: methods and applications, Tome 19 (2023). http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a17/

[1] Abe E., Hopf algebras, Cambridge Tracts in Math., 74, Cambridge University Press, Cambridge, 1980 | MR | Zbl

[2] Aguiar M., “Pre-Poisson algebras”, Lett. Math. Phys., 54 (2000), 263–277 | DOI | MR | Zbl

[3] Aguiar M., “On the associative analog of Lie bialgebras”, J. Algebra, 244 (2001), 492–532 | DOI | MR | Zbl

[4] Aguiar M., “Infinitesimal bialgebras, pre-Lie and dendriform algebras”, Hopf Algebras, Lecture Notes in Pure and Appl. Math., 237, Dekker, New York, 2004, 1–33, arXiv: math.QA/0211074 | MR | Zbl

[5] Almutairi H., AbdGhafur A., “Derivations of some classes of Zinbiel algebras”, Int. J. Pure Appl. Math., 118 (2018), 397–406

[6] Aschenbrenner M., van den Dries L., van der Hoeven J., Asymptotic differential algebra and model theory of transseries, Ann. of Math. Stud., 195, Princeton University Press, Princeton, NJ, 2017 | DOI | MR | Zbl

[7] Bai C., “Double constructions of Frobenius algebras, Connes cocycles and their duality”, J. Noncommut. Geom., 4 (2010), 475–530, arXiv: 0808.3330 | DOI | MR | Zbl

[8] Bai C., Bellier O., Guo L., Ni X., “Splitting of operations, Manin products, and Rota–Baxter operators”, Int. Math. Res. Not., 2013 (2013), 485–524, arXiv: 1106.6080 | DOI | MR | Zbl

[9] Bai C., Guo L., Ni X., “$\mathcal{O}$-operators on associative algebras and associative Yang–Baxter equations”, Pacific J. Math., 256 (2012), 257–289, arXiv: 0910.3261 | DOI | MR | Zbl

[10] Bai C., Guo L., Ni X., “$\mathcal{O}$-operators on associative algebras, associative Yang–Baxter equations and dendriform algebras”, Quantized Algebra and Physics, Nankai Ser. Pure Appl. Math. Theoret. Phys., 8, World Sci. Publ., Hackensack, NJ, 2012, 10–51 | DOI | MR | Zbl

[11] Bai C., Guo L., Sheng Y., “Coherent categorical structures for Lie bialgebras, Manin triples, classical $r$-matrices and pre-Lie algebras”, Forum Math., 34 (2022), 989–1013, arXiv: 2205.09206 | DOI | MR | Zbl

[12] Bhaskara K. H., Viswanath K., Poisson algebras and Poisson manifolds, Pitman Research Notes in Math. Ser., 174, Longman Scientific Technical, Harlow, 1988 | MR | Zbl

[13] Bokut L. A., Chen Y., Zhang Z., “Gröbner–Shirshov bases method for Gelfand–Dorfman–Novikov algebras”, J. Algebra Appl., 16 (2017), 1750001, 22 pp., arXiv: 1506.03466 | DOI | MR | Zbl

[14] Bourbaki N., Lie groups and Lie algebras, Chapters 1–3, Elements of Mathematics (Berlin), Springer-Verlag, Berlin, 1998 | MR | Zbl

[15] Buium A., Differential algebra and Diophantine geometry, Actualités Mathématiques, Hermann, Paris, 1994 | MR | Zbl

[16] Chari V., Pressley A., A guide to quantum groups, Cambridge University Press, Cambridge, 1995 | MR | Zbl

[17] Connes A., Noncommutative geometry, Academic Press Inc., San Diego, CA, 1994 | MR | Zbl

[18] Connes A., Lott J., “The metric aspect of noncommutative geometry”, New Symmetry Principles in Quantum Field Theory (Cargèse, 1991), NATO Adv. Sci. Inst. Ser. B: Phys., 295, Springer, Boston, MA, 1992, 53–93 | DOI | MR

[19] Doi Y., “Homological coalgebra”, J. Math. Soc. Japan, 33 (1981), 31–50 | DOI | MR | Zbl

[20] Drinfeld V. G., “Hamiltonian structures on Lie groups, Lie bialgebras and the geometric meaning of classical Yang–Baxter equations”, Sov. Math. Dokl., 27, 1983, 68–71 | MR | Zbl

[21] Filippov V. T., “$n$-Lie algebras”, Sib. Math. J., 26 (1985), 879–891 | DOI | MR | Zbl

[22] Gerstenhaber M., “The cohomology structure of an associative ring”, Ann. of Math., 78 (1963), 267–288 | DOI | MR | Zbl

[23] Gubarev V.Yu., Kolesnikov P. S., “Operads of decorated trees and their duals”, Comment. Math. Univ. Carolin., 55 (2014), 421–445, arXiv: 1401.3534 | DOI | MR | Zbl

[24] Guo L., Keigher W., “On differential Rota–Baxter algebras”, J. Pure Appl. Algebra, 212 (2008), 522–540, arXiv: math.RA/0703780 | DOI | MR | Zbl

[25] Iochum B., Schücker T., “Yang–Mills–Higgs versus Connes–Lott”, Comm. Math. Phys., 178 (1996), 1–26, arXiv: hep-th/9501142 | DOI | MR | Zbl

[26] Joni S. A., Rota G.-C., “Coalgebras and bialgebras in combinatorics”, Stud. Appl. Math., 61 (1979), 93–139 | DOI | MR | Zbl

[27] Kalau W., “Hamilton formalism in non-commutative geometry”, J. Geom. Phys., 18 (1996), 349–380, arXiv: hep-th/9409193 | DOI | MR | Zbl

[28] Kalau W., Papadopoulos N. A., Plass J., Warzecha J.-M., “Differential algebras in non-commutative geometry”, J. Geom. Phys., 16 (1995), 149–167, arXiv: hep-th/9311121 | DOI | MR | Zbl

[29] Kaygorodov I., Popov Yu., “Generalized derivations of (color) $n$-ary algebras”, Linear Multilinear Algebra, 64 (2016), 1086–1106, arXiv: 1506.00734 | DOI | MR | Zbl

[30] Kock J., Frobenius algebras and 2D topological quantum field theories, London Math. Soc. Stud. Texts, 59, Cambridge University Press, Cambridge, 2004 | DOI | MR | Zbl

[31] Kolchin E. R., Differential algebra and algebraic groups, Pure Appl. Math., 54, Academic Press, New York, 1973 | MR | Zbl

[32] Lauda A. D., Pfeiffer H., “Open-closed strings: two-dimensional extended TQFTs and Frobenius algebras”, Topology Appl., 155 (2008), 623–666, arXiv: math.AT/0510664 | DOI | MR | Zbl

[33] Leger G. F., Luks E. M., “Generalized derivations of Lie algebras”, J. Algebra, 228 (2000), 165–203 | DOI | MR | Zbl

[34] Liu J., Bai C., Sheng Y., “Noncommutative Poisson bialgebras”, J. Algebra, 556 (2020), 35–66, arXiv: 2004.02560 | DOI | MR | Zbl

[35] Liu X., Guo X., Zhao K., “Biderivations of the block Lie algebras”, Linear Algebra Appl., 538 (2018), 43–55 | DOI | MR | Zbl

[36] Loday J.-L., “Cup-product for Leibniz cohomology and dual Leibniz algebras”, Math. Scand., 77 (1995), 189–196 | DOI | MR | Zbl

[37] Loday J.-L., “Dialgebras”, Dialgebras and Related Operads, Lecture Notes in Math., 1763, Springer, Berlin, 2001, 7–66, arXiv: math.QA/0102053 | DOI | MR | Zbl

[38] Loday J.-L., “On the operad of associative algebras with derivation”, Georgian Math. J., 17 (2010), 347–372, arXiv: 0906.4730 | DOI | MR | Zbl

[39] Matthes R., Rudolph G., Wulkenhaar R., “On the structure of a differential algebra used by Connes and Lott”, Rep. Math. Phys., 38 (1996), 45–66 | DOI | MR | Zbl

[40] Nambu Y., “Generalized Hamiltonian dynamics”, Phys. Rev. D, 7 (1973), 2405–2412 | DOI | MR | Zbl

[41] Ni X., Bai C., “Poisson bialgebras”, J. Math. Phys., 54 (2013), 023515, 14 pp. | DOI | MR | Zbl

[42] Pillay A., “Model theory, differential algebra, and number theory”, Proceedings of the International Congress of Mathematicians (Zürich, 1994), v. 1, 2, Birkhäuser, Basel, 1995, 277–287 | DOI | MR | Zbl

[43] Ritt J. F., Differential algebra, Amer. Math. Soc. Colloq. Publ., 33, Amer. Math. Soc., New York, N.Y., 1950 | MR | Zbl

[44] Sagle A. A., Walde R. E., Introduction to Lie groups and Lie algebras, Pure Appl. Math., 51, Academic Press, New York, 1973 | MR | Zbl

[45] Xu X., “New generalized simple Lie algebras of Cartan type over a field with characteristic $0$”, J. Algebra, 224 (2000), 23–58, arXiv: math.QA/9911221 | DOI | MR | Zbl

[46] Zhelyabin V. N., “Jordan bialgebras and their connection with Lie bialgebras”, Algebr. Logic, 36 (1997), 1–15 | DOI | MR