Mots-clés : Poisson bialgebra.
@article{SIGMA_2023_19_a17,
author = {Yuanchang Lin and Xuguang Liu and Chengming Bai},
title = {Differential {Antisymmetric} {Infinitesimal} {Bialgebras,} {Coherent} {Derivations} and {Poisson} {Bialgebras}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2023},
volume = {19},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a17/}
}
TY - JOUR AU - Yuanchang Lin AU - Xuguang Liu AU - Chengming Bai TI - Differential Antisymmetric Infinitesimal Bialgebras, Coherent Derivations and Poisson Bialgebras JO - Symmetry, integrability and geometry: methods and applications PY - 2023 VL - 19 UR - http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a17/ LA - en ID - SIGMA_2023_19_a17 ER -
%0 Journal Article %A Yuanchang Lin %A Xuguang Liu %A Chengming Bai %T Differential Antisymmetric Infinitesimal Bialgebras, Coherent Derivations and Poisson Bialgebras %J Symmetry, integrability and geometry: methods and applications %D 2023 %V 19 %U http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a17/ %G en %F SIGMA_2023_19_a17
Yuanchang Lin; Xuguang Liu; Chengming Bai. Differential Antisymmetric Infinitesimal Bialgebras, Coherent Derivations and Poisson Bialgebras. Symmetry, integrability and geometry: methods and applications, Tome 19 (2023). http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a17/
[1] Abe E., Hopf algebras, Cambridge Tracts in Math., 74, Cambridge University Press, Cambridge, 1980 | MR | Zbl
[2] Aguiar M., “Pre-Poisson algebras”, Lett. Math. Phys., 54 (2000), 263–277 | DOI | MR | Zbl
[3] Aguiar M., “On the associative analog of Lie bialgebras”, J. Algebra, 244 (2001), 492–532 | DOI | MR | Zbl
[4] Aguiar M., “Infinitesimal bialgebras, pre-Lie and dendriform algebras”, Hopf Algebras, Lecture Notes in Pure and Appl. Math., 237, Dekker, New York, 2004, 1–33, arXiv: math.QA/0211074 | MR | Zbl
[5] Almutairi H., AbdGhafur A., “Derivations of some classes of Zinbiel algebras”, Int. J. Pure Appl. Math., 118 (2018), 397–406
[6] Aschenbrenner M., van den Dries L., van der Hoeven J., Asymptotic differential algebra and model theory of transseries, Ann. of Math. Stud., 195, Princeton University Press, Princeton, NJ, 2017 | DOI | MR | Zbl
[7] Bai C., “Double constructions of Frobenius algebras, Connes cocycles and their duality”, J. Noncommut. Geom., 4 (2010), 475–530, arXiv: 0808.3330 | DOI | MR | Zbl
[8] Bai C., Bellier O., Guo L., Ni X., “Splitting of operations, Manin products, and Rota–Baxter operators”, Int. Math. Res. Not., 2013 (2013), 485–524, arXiv: 1106.6080 | DOI | MR | Zbl
[9] Bai C., Guo L., Ni X., “$\mathcal{O}$-operators on associative algebras and associative Yang–Baxter equations”, Pacific J. Math., 256 (2012), 257–289, arXiv: 0910.3261 | DOI | MR | Zbl
[10] Bai C., Guo L., Ni X., “$\mathcal{O}$-operators on associative algebras, associative Yang–Baxter equations and dendriform algebras”, Quantized Algebra and Physics, Nankai Ser. Pure Appl. Math. Theoret. Phys., 8, World Sci. Publ., Hackensack, NJ, 2012, 10–51 | DOI | MR | Zbl
[11] Bai C., Guo L., Sheng Y., “Coherent categorical structures for Lie bialgebras, Manin triples, classical $r$-matrices and pre-Lie algebras”, Forum Math., 34 (2022), 989–1013, arXiv: 2205.09206 | DOI | MR | Zbl
[12] Bhaskara K. H., Viswanath K., Poisson algebras and Poisson manifolds, Pitman Research Notes in Math. Ser., 174, Longman Scientific Technical, Harlow, 1988 | MR | Zbl
[13] Bokut L. A., Chen Y., Zhang Z., “Gröbner–Shirshov bases method for Gelfand–Dorfman–Novikov algebras”, J. Algebra Appl., 16 (2017), 1750001, 22 pp., arXiv: 1506.03466 | DOI | MR | Zbl
[14] Bourbaki N., Lie groups and Lie algebras, Chapters 1–3, Elements of Mathematics (Berlin), Springer-Verlag, Berlin, 1998 | MR | Zbl
[15] Buium A., Differential algebra and Diophantine geometry, Actualités Mathématiques, Hermann, Paris, 1994 | MR | Zbl
[16] Chari V., Pressley A., A guide to quantum groups, Cambridge University Press, Cambridge, 1995 | MR | Zbl
[17] Connes A., Noncommutative geometry, Academic Press Inc., San Diego, CA, 1994 | MR | Zbl
[18] Connes A., Lott J., “The metric aspect of noncommutative geometry”, New Symmetry Principles in Quantum Field Theory (Cargèse, 1991), NATO Adv. Sci. Inst. Ser. B: Phys., 295, Springer, Boston, MA, 1992, 53–93 | DOI | MR
[19] Doi Y., “Homological coalgebra”, J. Math. Soc. Japan, 33 (1981), 31–50 | DOI | MR | Zbl
[20] Drinfeld V. G., “Hamiltonian structures on Lie groups, Lie bialgebras and the geometric meaning of classical Yang–Baxter equations”, Sov. Math. Dokl., 27, 1983, 68–71 | MR | Zbl
[21] Filippov V. T., “$n$-Lie algebras”, Sib. Math. J., 26 (1985), 879–891 | DOI | MR | Zbl
[22] Gerstenhaber M., “The cohomology structure of an associative ring”, Ann. of Math., 78 (1963), 267–288 | DOI | MR | Zbl
[23] Gubarev V.Yu., Kolesnikov P. S., “Operads of decorated trees and their duals”, Comment. Math. Univ. Carolin., 55 (2014), 421–445, arXiv: 1401.3534 | DOI | MR | Zbl
[24] Guo L., Keigher W., “On differential Rota–Baxter algebras”, J. Pure Appl. Algebra, 212 (2008), 522–540, arXiv: math.RA/0703780 | DOI | MR | Zbl
[25] Iochum B., Schücker T., “Yang–Mills–Higgs versus Connes–Lott”, Comm. Math. Phys., 178 (1996), 1–26, arXiv: hep-th/9501142 | DOI | MR | Zbl
[26] Joni S. A., Rota G.-C., “Coalgebras and bialgebras in combinatorics”, Stud. Appl. Math., 61 (1979), 93–139 | DOI | MR | Zbl
[27] Kalau W., “Hamilton formalism in non-commutative geometry”, J. Geom. Phys., 18 (1996), 349–380, arXiv: hep-th/9409193 | DOI | MR | Zbl
[28] Kalau W., Papadopoulos N. A., Plass J., Warzecha J.-M., “Differential algebras in non-commutative geometry”, J. Geom. Phys., 16 (1995), 149–167, arXiv: hep-th/9311121 | DOI | MR | Zbl
[29] Kaygorodov I., Popov Yu., “Generalized derivations of (color) $n$-ary algebras”, Linear Multilinear Algebra, 64 (2016), 1086–1106, arXiv: 1506.00734 | DOI | MR | Zbl
[30] Kock J., Frobenius algebras and 2D topological quantum field theories, London Math. Soc. Stud. Texts, 59, Cambridge University Press, Cambridge, 2004 | DOI | MR | Zbl
[31] Kolchin E. R., Differential algebra and algebraic groups, Pure Appl. Math., 54, Academic Press, New York, 1973 | MR | Zbl
[32] Lauda A. D., Pfeiffer H., “Open-closed strings: two-dimensional extended TQFTs and Frobenius algebras”, Topology Appl., 155 (2008), 623–666, arXiv: math.AT/0510664 | DOI | MR | Zbl
[33] Leger G. F., Luks E. M., “Generalized derivations of Lie algebras”, J. Algebra, 228 (2000), 165–203 | DOI | MR | Zbl
[34] Liu J., Bai C., Sheng Y., “Noncommutative Poisson bialgebras”, J. Algebra, 556 (2020), 35–66, arXiv: 2004.02560 | DOI | MR | Zbl
[35] Liu X., Guo X., Zhao K., “Biderivations of the block Lie algebras”, Linear Algebra Appl., 538 (2018), 43–55 | DOI | MR | Zbl
[36] Loday J.-L., “Cup-product for Leibniz cohomology and dual Leibniz algebras”, Math. Scand., 77 (1995), 189–196 | DOI | MR | Zbl
[37] Loday J.-L., “Dialgebras”, Dialgebras and Related Operads, Lecture Notes in Math., 1763, Springer, Berlin, 2001, 7–66, arXiv: math.QA/0102053 | DOI | MR | Zbl
[38] Loday J.-L., “On the operad of associative algebras with derivation”, Georgian Math. J., 17 (2010), 347–372, arXiv: 0906.4730 | DOI | MR | Zbl
[39] Matthes R., Rudolph G., Wulkenhaar R., “On the structure of a differential algebra used by Connes and Lott”, Rep. Math. Phys., 38 (1996), 45–66 | DOI | MR | Zbl
[40] Nambu Y., “Generalized Hamiltonian dynamics”, Phys. Rev. D, 7 (1973), 2405–2412 | DOI | MR | Zbl
[41] Ni X., Bai C., “Poisson bialgebras”, J. Math. Phys., 54 (2013), 023515, 14 pp. | DOI | MR | Zbl
[42] Pillay A., “Model theory, differential algebra, and number theory”, Proceedings of the International Congress of Mathematicians (Zürich, 1994), v. 1, 2, Birkhäuser, Basel, 1995, 277–287 | DOI | MR | Zbl
[43] Ritt J. F., Differential algebra, Amer. Math. Soc. Colloq. Publ., 33, Amer. Math. Soc., New York, N.Y., 1950 | MR | Zbl
[44] Sagle A. A., Walde R. E., Introduction to Lie groups and Lie algebras, Pure Appl. Math., 51, Academic Press, New York, 1973 | MR | Zbl
[45] Xu X., “New generalized simple Lie algebras of Cartan type over a field with characteristic $0$”, J. Algebra, 224 (2000), 23–58, arXiv: math.QA/9911221 | DOI | MR | Zbl
[46] Zhelyabin V. N., “Jordan bialgebras and their connection with Lie bialgebras”, Algebr. Logic, 36 (1997), 1–15 | DOI | MR