The Clebsch–Gordan Rule for $U(\mathfrak{sl}_2)$, the Krawtchouk Algebras and the Hamming Graphs
Symmetry, integrability and geometry: methods and applications, Tome 19 (2023) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $D\geq 1$ and $q\geq 3$ be two integers. Let $H(D)=H(D,q)$ denote the $D$-dimensional Hamming graph over a $q$-element set. Let $\mathcal{T}(D)$ denote the Terwilliger algebra of $H(D)$. Let $V(D)$ denote the standard $\mathcal{T}(D)$-module. Let $\omega$ denote a complex scalar. We consider a unital associative algebra $\mathfrak{K}_\omega$ defined by generators and relations. The generators are $A$ and $B$. The relations are $A^2 B-2 ABA +B A^2 =B+\omega A$, $B^2A-2 BAB+AB^2=A+\omega B$. The algebra $\mathfrak{K}_\omega$ is the case of the Askey–Wilson algebras corresponding to the Krawtchouk polynomials. The algebra $\mathfrak{K}_\omega$ is isomorphic to $\mathrm{U}({\mathfrak{sl}_2)}$ when $\omega^2\not=1$. We view $V(D)$ as a \smash{$\mathfrak{K}_{1-\frac{2}{q}}$}-module. We apply the Clebsch–Gordan rule for $\mathrm{U}({\mathfrak{sl}_2)}$ to decompose $V(D)$ into a direct sum of irreducible $\mathcal{T}(D)$-modules.
Keywords: Clebsch–Gordan rule, Hamming graph, Terwilliger algebra.
Mots-clés : Krawtchouk algebra
@article{SIGMA_2023_19_a16,
     author = {Hau-Wen Huang},
     title = {The {Clebsch{\textendash}Gordan} {Rule} for $U(\mathfrak{sl}_2)$, the {Krawtchouk} {Algebras} and the {Hamming} {Graphs}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2023},
     volume = {19},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a16/}
}
TY  - JOUR
AU  - Hau-Wen Huang
TI  - The Clebsch–Gordan Rule for $U(\mathfrak{sl}_2)$, the Krawtchouk Algebras and the Hamming Graphs
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2023
VL  - 19
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a16/
LA  - en
ID  - SIGMA_2023_19_a16
ER  - 
%0 Journal Article
%A Hau-Wen Huang
%T The Clebsch–Gordan Rule for $U(\mathfrak{sl}_2)$, the Krawtchouk Algebras and the Hamming Graphs
%J Symmetry, integrability and geometry: methods and applications
%D 2023
%V 19
%U http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a16/
%G en
%F SIGMA_2023_19_a16
Hau-Wen Huang. The Clebsch–Gordan Rule for $U(\mathfrak{sl}_2)$, the Krawtchouk Algebras and the Hamming Graphs. Symmetry, integrability and geometry: methods and applications, Tome 19 (2023). http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a16/

[1] Bernard P.-A., Crampé N., Vinet L., Entanglement of free fermions on Johnson graphs, arXiv: 2104.11581 | MR

[2] Bernard P.-A., Crampé N., Vinet L., “Entanglement of free fermions on Hamming graphs”, Nuclear Phys. B, 986 (2023), 116061, 22 pp., arXiv: 2103.15742 | DOI | MR

[3] Curtis C. W., Reiner I., Representation theory of finite groups and associative algebras, Pure Appl. Math., 11, Interscience Publishers, New York, 1962 | MR | Zbl

[4] Gijswijt D., Schrijver A., Tanaka H., “New upper bounds for nonbinary codes based on the Terwilliger algebra and semidefinite programming”, J. Combin. Theory Ser. A, 113 (2006), 1719–1731 | DOI | MR | Zbl

[5] Go J.T., “The Terwilliger algebra of the hypercube”, European J. Combin., 23 (2002), 399–429 | DOI | MR | Zbl

[6] Huang H.-W., “Finite-dimensional irreducible modules of the universal Askey–Wilson algebra”, Comm. Math. Phys., 340 (2015), 959–984, arXiv: 1210.1740 | DOI | MR | Zbl

[7] Huang H.-W., “Finite-dimensional irreducible modules of the Bannai–Ito algebra at characteristic zero”, Lett. Math. Phys., 110 (2020), 2519–2541, arXiv: 1910.11447 | DOI | MR | Zbl

[8] Huang H.-W., Bockting-Conrad S., “Finite-dimensional irreducible modules of the Racah algebra at characteristic zero”, SIGMA, 16 (2020), 018, 17 pp., arXiv: 1910.11446 | DOI | MR | Zbl

[9] Jafarizadeh M. A., Nami S., Eghbalifam F., Entanglement entropy in the Hamming networks, arXiv: 1503.04986

[10] Kassel C., Quantum groups, Grad. Texts in Math., 155, Springer, New York, 1995 | DOI | MR | Zbl

[11] Levstein F., Maldonado C., Penazzi D., “The Terwilliger algebra of a Hamming scheme $H(d,q)$”, European J. Combin., 27 (2006), 1–10 | DOI | MR | Zbl

[12] Milnor J. W., Moore J. C., “On the structure of Hopf algebras”, Ann. of Math., 81 (1965), 211–264 | DOI | MR | Zbl

[13] Nomura K., Terwilliger P., “Krawtchouk polynomials, the Lie algebra $\mathfrak{sl}_2$, and Leonard pairs”, Linear Algebra Appl., 437 (2012), 345–375, arXiv: 1201.1645 | DOI | MR | Zbl

[14] Tanabe K., “The irreducible modules of the Terwilliger algebras of Doob schemes”, J. Algebraic Combin., 6 (1997), 173–195 | DOI | MR | Zbl

[15] Terwilliger P., Leonard pairs and dual polynomial sequences, Unpublished manuscript, 1987 https://www.math.wisc.edu/t̃erwilli/Htmlfiles/leonardpair.pdf

[16] Terwilliger P., “The subconstituent algebra of an association scheme. I”, J. Algebraic Combin., 1 (1992), 363–388 | DOI | MR | Zbl

[17] Terwilliger P., “The subconstituent algebra of an association scheme. II”, J. Algebraic Combin., 2 (1993), 73–103 | DOI | MR | Zbl

[18] Terwilliger P., “The subconstituent algebra of an association scheme. III”, J. Algebraic Combin., 2 (1993), 177–210 | DOI | MR | Zbl

[19] Terwilliger P., “An algebraic approach to the Askey scheme of orthogonal polynomials”, Orthogonal Polynomials and Special Functions, Lecture Notes in Math., 1883, Springer, Berlin, 2006, 255–330 | DOI | MR | Zbl

[20] Terwilliger P., Manila notes, 2010 https://people.math.wisc.edu/t̃erwilli/teaching.html

[21] Terwilliger P., Vidunas R., “Leonard pairs and the Askey–Wilson relations”, J. Algebra Appl., 3 (2004), 411–426, arXiv: math.QA/0305356 | DOI | MR | Zbl

[22] Vidũnas R., “Normalized Leonard pairs and Askey–Wilson relations”, Linear Algebra Appl., 422 (2007), 39–57, arXiv: math.RA/0505041 | DOI | MR | Zbl