Mots-clés : Krawtchouk algebra
@article{SIGMA_2023_19_a16,
author = {Hau-Wen Huang},
title = {The {Clebsch{\textendash}Gordan} {Rule} for $U(\mathfrak{sl}_2)$, the {Krawtchouk} {Algebras} and the {Hamming} {Graphs}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2023},
volume = {19},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a16/}
}
TY - JOUR
AU - Hau-Wen Huang
TI - The Clebsch–Gordan Rule for $U(\mathfrak{sl}_2)$, the Krawtchouk Algebras and the Hamming Graphs
JO - Symmetry, integrability and geometry: methods and applications
PY - 2023
VL - 19
UR - http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a16/
LA - en
ID - SIGMA_2023_19_a16
ER -
Hau-Wen Huang. The Clebsch–Gordan Rule for $U(\mathfrak{sl}_2)$, the Krawtchouk Algebras and the Hamming Graphs. Symmetry, integrability and geometry: methods and applications, Tome 19 (2023). http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a16/
[1] Bernard P.-A., Crampé N., Vinet L., Entanglement of free fermions on Johnson graphs, arXiv: 2104.11581 | MR
[2] Bernard P.-A., Crampé N., Vinet L., “Entanglement of free fermions on Hamming graphs”, Nuclear Phys. B, 986 (2023), 116061, 22 pp., arXiv: 2103.15742 | DOI | MR
[3] Curtis C. W., Reiner I., Representation theory of finite groups and associative algebras, Pure Appl. Math., 11, Interscience Publishers, New York, 1962 | MR | Zbl
[4] Gijswijt D., Schrijver A., Tanaka H., “New upper bounds for nonbinary codes based on the Terwilliger algebra and semidefinite programming”, J. Combin. Theory Ser. A, 113 (2006), 1719–1731 | DOI | MR | Zbl
[5] Go J.T., “The Terwilliger algebra of the hypercube”, European J. Combin., 23 (2002), 399–429 | DOI | MR | Zbl
[6] Huang H.-W., “Finite-dimensional irreducible modules of the universal Askey–Wilson algebra”, Comm. Math. Phys., 340 (2015), 959–984, arXiv: 1210.1740 | DOI | MR | Zbl
[7] Huang H.-W., “Finite-dimensional irreducible modules of the Bannai–Ito algebra at characteristic zero”, Lett. Math. Phys., 110 (2020), 2519–2541, arXiv: 1910.11447 | DOI | MR | Zbl
[8] Huang H.-W., Bockting-Conrad S., “Finite-dimensional irreducible modules of the Racah algebra at characteristic zero”, SIGMA, 16 (2020), 018, 17 pp., arXiv: 1910.11446 | DOI | MR | Zbl
[9] Jafarizadeh M. A., Nami S., Eghbalifam F., Entanglement entropy in the Hamming networks, arXiv: 1503.04986
[10] Kassel C., Quantum groups, Grad. Texts in Math., 155, Springer, New York, 1995 | DOI | MR | Zbl
[11] Levstein F., Maldonado C., Penazzi D., “The Terwilliger algebra of a Hamming scheme $H(d,q)$”, European J. Combin., 27 (2006), 1–10 | DOI | MR | Zbl
[12] Milnor J. W., Moore J. C., “On the structure of Hopf algebras”, Ann. of Math., 81 (1965), 211–264 | DOI | MR | Zbl
[13] Nomura K., Terwilliger P., “Krawtchouk polynomials, the Lie algebra $\mathfrak{sl}_2$, and Leonard pairs”, Linear Algebra Appl., 437 (2012), 345–375, arXiv: 1201.1645 | DOI | MR | Zbl
[14] Tanabe K., “The irreducible modules of the Terwilliger algebras of Doob schemes”, J. Algebraic Combin., 6 (1997), 173–195 | DOI | MR | Zbl
[15] Terwilliger P., Leonard pairs and dual polynomial sequences, Unpublished manuscript, 1987 https://www.math.wisc.edu/t̃erwilli/Htmlfiles/leonardpair.pdf
[16] Terwilliger P., “The subconstituent algebra of an association scheme. I”, J. Algebraic Combin., 1 (1992), 363–388 | DOI | MR | Zbl
[17] Terwilliger P., “The subconstituent algebra of an association scheme. II”, J. Algebraic Combin., 2 (1993), 73–103 | DOI | MR | Zbl
[18] Terwilliger P., “The subconstituent algebra of an association scheme. III”, J. Algebraic Combin., 2 (1993), 177–210 | DOI | MR | Zbl
[19] Terwilliger P., “An algebraic approach to the Askey scheme of orthogonal polynomials”, Orthogonal Polynomials and Special Functions, Lecture Notes in Math., 1883, Springer, Berlin, 2006, 255–330 | DOI | MR | Zbl
[20] Terwilliger P., Manila notes, 2010 https://people.math.wisc.edu/t̃erwilli/teaching.html
[21] Terwilliger P., Vidunas R., “Leonard pairs and the Askey–Wilson relations”, J. Algebra Appl., 3 (2004), 411–426, arXiv: math.QA/0305356 | DOI | MR | Zbl
[22] Vidũnas R., “Normalized Leonard pairs and Askey–Wilson relations”, Linear Algebra Appl., 422 (2007), 39–57, arXiv: math.RA/0505041 | DOI | MR | Zbl