Mots-clés : Darboux transformations, Frenet–Serret formulas
@article{SIGMA_2023_19_a15,
author = {Primitivo B. Acosta-Hum\'anez and Moulay Barkatou and Raquel S\'anchez-Cauce and Jacques-Arthur Weil},
title = {Darboux {Transformations} for {Orthogonal} {Differential} {Systems} and {Differential} {Galois} {Theory}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2023},
volume = {19},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a15/}
}
TY - JOUR AU - Primitivo B. Acosta-Humánez AU - Moulay Barkatou AU - Raquel Sánchez-Cauce AU - Jacques-Arthur Weil TI - Darboux Transformations for Orthogonal Differential Systems and Differential Galois Theory JO - Symmetry, integrability and geometry: methods and applications PY - 2023 VL - 19 UR - http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a15/ LA - en ID - SIGMA_2023_19_a15 ER -
%0 Journal Article %A Primitivo B. Acosta-Humánez %A Moulay Barkatou %A Raquel Sánchez-Cauce %A Jacques-Arthur Weil %T Darboux Transformations for Orthogonal Differential Systems and Differential Galois Theory %J Symmetry, integrability and geometry: methods and applications %D 2023 %V 19 %U http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a15/ %G en %F SIGMA_2023_19_a15
Primitivo B. Acosta-Humánez; Moulay Barkatou; Raquel Sánchez-Cauce; Jacques-Arthur Weil. Darboux Transformations for Orthogonal Differential Systems and Differential Galois Theory. Symmetry, integrability and geometry: methods and applications, Tome 19 (2023). http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a15/
[1] Acosta Humánez P. B., Galoisian approach to supersymmetric quantum mechanics, Ph.D. Thesis, Universitat Politècnica de Catalunya, 2009 , arXiv: http://hdl.handle.net/10803/227231008.3445 | Zbl
[2] Acosta-Humánez P. B., Galoisian approach to supersymmetric quantum mechanics. The integrability of the Schrödinger equation by means of differential Galois theory, VDM Verlag, Berlin, 2010
[3] Acosta-Humánez P. B., Jiménez M., Ospino J., “Galoisian and numerical approach of three dimensional linear differential systems with skew symmetric matrices defined in a non-constant differential field”, Rev. Int. Métod. Numér. Cálc. Diseño Ing., 34 (2018), 8, 17 pp. | DOI | MR
[4] Acosta-Humánez P. B., Morales-Ruiz J. J., Weil J.-A., “Galoisian approach to integrability of {S}chrödinger equation”, Rep. Math. Phys., 67 (2011), 305–374, arXiv: 1008.3445 | DOI | MR | Zbl
[5] Aparicio-Monforte A., Compoint E., Weil J.-A., “A characterization of reduced forms of linear differential systems”, J. Pure Appl. Algebra, 217 (2013), 1504–1516, arXiv: 1206.6661 | DOI | MR | Zbl
[6] Barkatou M. A., “An algorithm for computing a companion block diagonal form for a system of linear differential equations”, Appl. Algebra Engrg. Comm. Comput., 4 (1993), 185–195 | DOI | MR | Zbl
[7] Barkatou M. A., Cluzeau T., Di Vizio L., Weil J.-A., “Reduced forms of linear differential systems and the intrinsic Galois–Lie algebra of Katz”, SIGMA, 16 (2020), 054, 13 pp., arXiv: 1912.10567 | DOI | MR | Zbl
[8] Barkatou M. A., Cluzeau T., El Bacha C., Weil J.-A., “Computing closed form solutions of integrable connections”, ISSAC 2012 – Proceedings of the 37th International Symposium on Symbolic and Algebraic Computation, ACM, New York, 2012, 43–50 | DOI | MR | Zbl
[9] Barkatou M. A., Cluzeau T., Weil J.-A., Di Vizio L., “Computing the Lie algebra of the differential Galois group of a linear differential system”, Proceedings of the 2016 ACM International Symposium on Symbolic and Algebraic Computation, ACM, New York, 2016, 63–70 | DOI | MR | Zbl
[10] Blázquez-Sanz D., Differential Galois theory and Lie–Vessiot systems, VDM Verlag, Berlin, 2008
[11] Blázquez-Sanz D., Morales-Ruiz J. J., “Differential Galois theory of algebraic Lie–Vessiot systems”, Differential Algebra, Complex Analysis and Orthogonal Polynomials, Contemp. Math., 509, Amer. Math. Soc., Providence, RI, 2010, 1–58, arXiv: 0901.4480 | DOI | MR | Zbl
[12] Bogner M., Algebraic characterization of differential operators of Calabi–Yau type, arXiv: 1304.5434
[13] Bogner M., Reiter S., “On symplectically rigid local systems of rank four and Calabi–Yau operators”, J. Symbolic Comput., 48 (2013), 64–100, arXiv: 1105.1136 | DOI | MR | Zbl
[14] Bostan A., Boukraa S., Maillard J.-M., Weil J.-A., “Diagonals of rational functions and selected differential Galois groups”, J. Phys. A, 48 (2015), 504001, 29 pp., arXiv: 1507.03227 | DOI | MR | Zbl
[15] Boukraa S., Hassani S., Maillard J.-M., “Differential algebra on lattice Green and Calabi–Yau operators”, J. Phys. A, 47 (2014), 095203, 37 pp., arXiv: 1311.2470 | DOI | MR | Zbl
[16] Boukraa S., Hassani S., Maillard J.-M., Weil J.-A., “Canonical decomposition of irreducible linear differential operators with symplectic or orthogonal differential Galois groups”, J. Phys. A, 48 (2015), 105202, 40 pp. | DOI | MR | Zbl
[17] Cortés J.L., Plyushchay M. S., “Linear differential equations for a fractional spin field”, J. Math. Phys., 35 (1994), 6049–6057, arXiv: hep-th/9405193 | DOI | MR | Zbl
[18] Crespo T., Hajto Z., Introduction to differential Galois theory, Cracow University of Technology Publishers, 2007 | MR
[19] Darboux G., “Sur une proposition relative aux équations linéaires”, C. R. Acad. Sci. Paris, 94 (1882), 1456–1459
[20] Darboux G., “Sur la représentation sphérique des surfaces”, Ann. Sci. École Norm. Sup., 5 (1888), 79–96 | DOI | MR
[21] Darboux G., Théorie des Surfaces, v. II, Gauthier-Villars, Paris, 1889 | MR
[22] Darboux G., Leçons sur la théorie générale des surfaces, v. I, II, Les Grands Classiques Gauthier-Villars, Éditions Jacques Gabay, Sceaux, 1993 | MR
[23] Dutt R., Khare A., Sukhatme U. P., “Supersymmetry, shape invariance, and exactly solvable potentials”, Amer. J. Phys., 56 (1988), 163–168 | DOI
[24] Fedorov Yu.N., Maciejewski A. J., Przybylska M., “The Poisson equations in the nonholonomic Suslov problem: integrability, meromorphic and hypergeometric solutions”, Nonlinearity, 22 (2009), 2231–2259, arXiv: 0902.0079 | DOI | MR | Zbl
[25] Fedorov Yu.N., Maciejewski A. J., Przybylska M., “The generalized Euler–Poinsot rigid body equations: explicit elliptic solutions”, J. Phys. A, 46 (2013), 415201, 26 pp., arXiv: 1304.6072 | DOI | MR | Zbl
[26] Gendenshteïn L., “Derivation of the exact spectra of the Schrödinger equation by means of supersymmetry”, JETP Lett., 38, 1983, 356–359 | Zbl
[27] Gu C., Hu H., Zhou Z., Darboux transformations in integrable systems. Theory and their applications to geometry, Math. Phys. Stud., 26, Springer, Dordrecht, 2005 | DOI | MR | Zbl
[28] Ince E. L., Ordinary differential equations, Dover Publications, New York, 1944 | MR | Zbl
[29] Jiménez S., Morales-Ruiz J. J., Sánchez-Cauce R., Zurro M.-A., “Differential Galois theory and Darboux transformations for integrable systems”, J. Geom. Phys., 115 (2017), 75–88 | DOI | MR | Zbl
[30] Jiménez S., Morales-Ruiz J. J., Sánchez-Cauce R., Zurro M.-A., “A computational approach to KdV rational solitons and their differential Galois groups”, Monogr. Real Acad. Ci. Zaragoza, 43, 2018, 107–110 | MR
[31] Jiménez S., Morales-Ruiz J. J., Sánchez-Cauce R., Zurro M.-A., “Rational KdV potentials and differential Galois theory”, SIGMA, 15 (2019), 047, 40 pp., arXiv: 1808.00743 | DOI | MR
[32] Matveev V. B., “Darboux transformation and explicit solutions of the Kadomtcev–Petviaschvily equation, depending on functional parameters”, Lett. Math. Phys., 3 (1979), 213–216 | DOI | MR | Zbl
[33] Matveev V. B., “Darboux transformation and the explicit solutions of differential-difference and difference-difference evolution equations. I”, Lett. Math. Phys., 3 (1979), 217–222 | DOI | MR | Zbl
[34] Matveev V. B., “Some comments on the rational solutions of the Zakharov–Schabat equations”, Lett. Math. Phys., 3 (1979), 503–512 | DOI | MR | Zbl
[35] Matveev V. B., “Darboux transformations, covariance theorems and integrable systems”, L.D Faddeev's Seminar on Mathematical Physics, Amer. Math. Soc. Transl. Ser. 2, 201, Amer. Math. Soc., Providence, RI, 2000, 179–209 | DOI | MR | Zbl
[36] Matveev V. B., Salle M. A., “Differential-difference evolution equations. II Darboux transformation for the Toda lattice”, Lett. Math. Phys., 3 (1979), 425–429 | DOI | MR | Zbl
[37] Matveev V. B., Salle M. A., Darboux transformations and solitons, Springer Ser. Nonlinear Dyn., Springer, Berlin, 1991 | DOI | MR | Zbl
[38] Nguyen K. A., van der Put M., “Solving linear differential equations”, Pure Appl. Math. Q., 6 (2010), 173–208 | DOI | MR | Zbl
[39] Novikov R. G., Taimanov I. A., “Moutard type transformation for matrix generalized analytic functions and gauge transformations”, Russian Math. Surveys, 71 (2016), 970–972, arXiv: 1607.06661 | DOI | MR | Zbl
[40] Novikov R. G., Taimanov I. A., “Darboux–Moutard transformations and Poincaré–Steklov operators”, Proc. Steklov Inst. Math., 302 (2018), 315–324 | DOI | MR | Zbl
[41] Rogers C., Schief W. K., Bäcklund and Darboux transformations. Geometry and modern applications in soliton theory, Cambridge Texts Appl. Math., Cambridge University Press, Cambridge, 2002 | DOI | MR | Zbl
[42] Rosu H. C., Short survey of Darboux transformations, arXiv: quant-ph/9809056
[43] Samsonov B. F., Pecheritsin A. A., “Chains of Darboux transformations for the matrix Schrödinger equation”, J. Phys. A, 37 (2004), 239–250, arXiv: quant-ph/0307145 | DOI | MR | Zbl
[44] Singer M. F., “Algebraic relations among solutions of linear differential equations: Fano's theorem”, Amer. J. Math., 110 (1988), 115–143 | DOI | MR | Zbl
[45] Spivak M., A comprehensive introduction to differential geometry, v. 2, Publish or Perish, Inc., Boston, Mass., 1999 | MR | Zbl
[46] van der Put M., Singer M. F., Galois theory of linear differential equations, Grundlehren Math. Wiss., 328, Springer, Berlin, 2003 | DOI | MR | Zbl
[47] van Hoeij M., “Solving third order linear differential equations in terms of second order equations”, ISSAC 2007, ACM, New York, 2007, 355–360 | DOI | MR | Zbl
[48] Witten E., “Dynamical breaking of supersymmetry”, Nuclear Phys. B, 185 (1981), 513–554 | DOI
[49] Yang H., Rui W., “New Lax pairs and Darboux transformation and its application to a shallow water wave model of generalized KdV type”, Math. Probl. Eng., 2013 (2013), 548690, 8 pp. | DOI | MR | Zbl