Mots-clés : Hénon–Heiles, Calogero–Moser.
@article{SIGMA_2023_19_a14,
author = {Allan P. Fordy and Qing Huang},
title = {Stationary {Flows} {Revisited}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2023},
volume = {19},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a14/}
}
Allan P. Fordy; Qing Huang. Stationary Flows Revisited. Symmetry, integrability and geometry: methods and applications, Tome 19 (2023). http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a14/
[1] Antonowicz M., Fordy A. P., “Coupled KdV equations with multi-Hamiltonian structures”, Phys. D, 28 (1987), 345–357 | DOI | MR | Zbl
[2] Antonowicz M., Fordy A. P., “Factorisation of energy dependent Schrödinger operators: Miura maps and modified systems”, Comm. Math. Phys., 124 (1989), 465–486 | DOI | MR | Zbl
[3] Antonowicz M., Fordy A. P., Wojciechowski S., “Integrable stationary flows: Miura maps and bi-Hamiltonian structures”, Phys. Lett. A, 124 (1987), 143–150 | DOI | MR
[4] Baker S., Enolskii V. Z., Fordy A. P., “Integrable quartic potentials and coupled KdV equations”, Phys. Lett. A, 201 (1995), 167–174, arXiv: hep-th/9504087 | DOI | MR | Zbl
[5] Ballesteros A., Enciso A., Herranz F. J., Ragnisco O., “Superintegrability on $N$-dimensional curved spaces: central potentials, centrifugal terms and monopoles”, Ann. Physics, 324 (2009), 1219–1233, arXiv: 0812.1882 | DOI | MR | Zbl
[6] Bogojavlenskii O. I., Novikov S. P., “The connection between the Hamiltonian formalisms of stationary and nonstationary problems”, Funct. Anal. Appl., 10 (1976), 8–11 | DOI | MR | Zbl
[7] Calogero F., “Solution of the one-dimensional $N$-body problems with quadratic and/or inversely quadratic pair potentials”, J. Math. Phys., 12 (1971), 419–436 | DOI | MR
[8] Cariglia M., “Hidden symmetries of dynamics in classical and quantum physics”, Rev. Modern Phys., 86 (2014), 1283–1333, arXiv: math-ph/1411.1262 | DOI
[9] Chanu C., Degiovanni L., Rastelli G., “Superintegrable three-body systems on the line”, J. Math. Phys., 49 (2008), 112901, 10 pp., arXiv: 0802.1353 | DOI | MR | Zbl
[10] Dorizzi B., Grammaticos B., Hietarinta J., Ramani A., Schwarz F., “New integrable three-dimensional quartic potentials”, Phys. Lett. A, 116 (1986), 432–436 | DOI | MR
[11] Evans N. W., “Superintegrability in classical mechanics”, Phys. Rev. A, 41 (1990), 5666–5676 | DOI | MR
[12] Fordy A. P., “The Hénon–Heiles system revisited”, Phys. D, 52 (1991), 204–210 | DOI | MR | Zbl
[13] Fordy A. P., Huang Q., “Integrable and superintegrable extensions of the rational Calogero–Moser model in three dimensions”, J. Phys. A, 55 (2022), 225203, 36 pp., arXiv: 2111.15659 | DOI | MR
[14] Hietarinta J., “A search for integrable two-dimensional Hamiltonian systems with polynomial potential”, Phys. Lett. A, 96 (1983), 273–278 | DOI | MR
[15] Horwood J. T., “Higher order first integrals in classical mechanics”, J. Math. Phys., 48 (2007), 102902, 18 pp. | DOI | MR | Zbl
[16] Miller Jr. W., Post S., Winternitz P., “Classical and quantum superintegrability with applications”, J. Phys. A, 46 (2013), 423001, 97 pp., arXiv: math-ph/1309.2694 | DOI | MR | Zbl
[17] Moser J., “Three integrable Hamiltonian systems connected with isospectral deformations”, Adv. Math., 16 (1975), 197–220 | DOI | MR | Zbl
[18] Perelomov A. M., Integrable systems of classical mechanics and Lie algebras, v. I, Birkhäuser, Basel, 1990 | DOI | MR | Zbl
[19] Ramani A., Dorizzi B., Grammaticos B., “Painlevé conjecture revisited”, Phys. Rev. Lett., 49 (1982), 1539–1541 | DOI | MR
[20] Reyman A. G., Semenov-Tian-Shansky M. A., “Compatible Poisson structures for Lax equations: an $r$-matrix approach”, Phys. Lett. A, 130 (1988), 456–460 | DOI | MR
[21] Wojciechowski S., “Superintegrability of the Calogero–Moser system”, Phys. Lett. A, 95 (1983), 279–281 | DOI | MR
[22] Wojciechowski S., Integrability of one particle in a perturbed central quartic potential, Phys. Scripta, 31 (1985), 433–438 | DOI | MR | Zbl