A Generalization of Zwegers' $\mu$-Function According to the $q$-Hermite–Weber Difference Equation
Symmetry, integrability and geometry: methods and applications, Tome 19 (2023) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We introduce a one parameter deformation of the Zwegers' $\mu$-function as the image of $q$-Borel and $q$-Laplace transformations of a fundamental solution for the $q$-Hermite–Weber equation. We further give some formulas for our generalized $\mu$-function, for example, forward and backward shift, translation, symmetry, a difference equation for the new parameter, and bilateral $q$-hypergeometric expressions. From one point of view, the continuous $q$-Hermite polynomials are some special cases of our $\mu$-function, and the Zwegers' $\mu$-function is regarded as a continuous $q$-Hermite polynomial of "$-1$ degree".
Keywords: $q$-hypergeometric series, continuous $q$-Hermite polynomial, mock theta functions.
Mots-clés : Appell–Lerch series, $q$-Boerl transformation, $q$-Laplace transformation
@article{SIGMA_2023_19_a13,
     author = {Genki Shibukawa and Satoshi Tsuchimi},
     title = {A {Generalization} of {Zwegers'} $\mu${-Function} {According} to the $q${-Hermite{\textendash}Weber} {Difference} {Equation}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2023},
     volume = {19},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a13/}
}
TY  - JOUR
AU  - Genki Shibukawa
AU  - Satoshi Tsuchimi
TI  - A Generalization of Zwegers' $\mu$-Function According to the $q$-Hermite–Weber Difference Equation
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2023
VL  - 19
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a13/
LA  - en
ID  - SIGMA_2023_19_a13
ER  - 
%0 Journal Article
%A Genki Shibukawa
%A Satoshi Tsuchimi
%T A Generalization of Zwegers' $\mu$-Function According to the $q$-Hermite–Weber Difference Equation
%J Symmetry, integrability and geometry: methods and applications
%D 2023
%V 19
%U http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a13/
%G en
%F SIGMA_2023_19_a13
Genki Shibukawa; Satoshi Tsuchimi. A Generalization of Zwegers' $\mu$-Function According to the $q$-Hermite–Weber Difference Equation. Symmetry, integrability and geometry: methods and applications, Tome 19 (2023). http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a13/

[1] Andrews G. E., Berndt B. C., Ramanujan's lost notebook, v. V, Springer, Cham, 2018 | DOI | MR

[2] Andrews G. E., Hickerson D., “Ramanujan's “lost” notebook. VII The sixth order mock theta functions”, Adv. Math., 89 (1991), 60–105 | DOI | MR | Zbl

[3] Beals R., Wong R., Special functions. A graduate text, Cambridge Stud. Adv. Math., 126, Cambridge University Press, Cambridge, 2010 | DOI | MR | Zbl

[4] Bradley-Thrush J. G., “Properties of the Appell–Lerch function (I)”, Ramanujan J., 57 (2022), 291–367 | DOI | MR | Zbl

[5] Bringmann K., Folsom A., Ono K., Rolen L., Harmonic Maass forms and mock modular forms: theory and applications, Amer. Math. Soc. Colloq. Publ., 64, Amer. Math. Soc., Providence, RI, 2017 | DOI | MR | Zbl

[6] Choi Y. S., “The basic bilateral hypergeometric series and the mock theta functions”, Ramanujan J., 24 (2011), 345–386 | DOI | MR | Zbl

[7] Garoufalidis S., Wheeler C., Modular $q$-holonomic modules, arXiv: 2203.17029

[8] Gasper G., Rahman M., Basic hypergeometric series, Encyclopedia Math. Appl., 96, 2nd ed., Cambridge University Press, Cambridge, 2004 | DOI | MR | Zbl

[9] Gauss C. F., “Summatio quarumdam serierum singularium”, Comm. Soc. Reg. Sci. Gottingensis Rec., 1, 1811, 1–40

[10] Gordon B., McIntosh R. J., “A survey of classical mock theta functions”, Partitions, $q$-Series, and Modular Forms, Dev. Math., 23, Springer, New York, 2012, 95–144 | DOI | MR | Zbl

[11] Hickerson D., “A proof of the mock theta conjectures”, Invent. Math., 94 (1988), 639–660 | DOI | MR | Zbl

[12] Kang S. Y., “Mock Jacobi forms in basic hypergeometric series”, Compos. Math., 145 (2009), 553–565, arXiv: 0806.1878 | DOI | MR | Zbl

[13] Koekoek R., Lesky P. A., Swarttouw R. F., Hypergeometric orthogonal polynomials and their $q$-analogues, Springer Monogr. Math., Springer, Berlin, 2010 | DOI | MR | Zbl

[14] Koelink H. T., “Hansen–Lommel orthogonality relations for Jackson's $q$-Bessel functions”, J. Math. Anal. Appl., 175 (1993), 425–437 | DOI | MR | Zbl

[15] Matsuzaka T., Private communication, 2022

[16] Ohyama Y., A unified approach to $q$-special functions of the Laplace type, arXiv: 1103.5232

[17] Ohyama Y., Private communication, 2022

[18] Ramis J. P., Sauloy J., Zhang C., Local analytic classification of $q$-difference equations, Astérisque, 355, 2013, vi+151 pp., arXiv: 0903.0853 | MR | Zbl

[19] Suslov S. K., “Some orthogonal very-well-poised $_8\phi_7$-functions that generalize Askey–Wilson polynomials”, Ramanujan J., 5 (2001), 183–218, arXiv: math.CA/9707213 | DOI | MR | Zbl

[20] Weil A., Elliptic functions according to Eisenstein and Kronecker, Classics Math., Springer, Berlin, 1999 | MR | Zbl

[21] Westerholt-Raum M., “${\rm H}$-harmonic Maaß–Jacobi forms of degree 1”, Res. Math. Sci., 2 (2015), 12, 34 pp. | DOI | MR | Zbl

[22] Zhang C., “Une sommation discrète pour des équations aux $q$-différences linéaires et à coefficients analytiques: théorie générale et exemples”, Differential Equations and the Stokes Phenomenon, World Sci. Publ., River Edge, NJ, 2002, 309–329 | DOI | MR | Zbl

[23] Zwegers S. P., Mock theta functions, Ph.D. Thesis, Universiteit Utrecht, 2002 https://dspace.library.uu.nl/handle/1874/878 | Zbl