Mots-clés : moduli, isomonodromic deformation
@article{SIGMA_2023_19_a12,
author = {Michi-aki Inaba},
title = {Moduli {Space} of {Factorized} {Ramified} {Connections} and {Generalized} {Isomonodromic} {Deformation}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2023},
volume = {19},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a12/}
}
TY - JOUR AU - Michi-aki Inaba TI - Moduli Space of Factorized Ramified Connections and Generalized Isomonodromic Deformation JO - Symmetry, integrability and geometry: methods and applications PY - 2023 VL - 19 UR - http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a12/ LA - en ID - SIGMA_2023_19_a12 ER -
Michi-aki Inaba. Moduli Space of Factorized Ramified Connections and Generalized Isomonodromic Deformation. Symmetry, integrability and geometry: methods and applications, Tome 19 (2023). http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a12/
[1] Babbitt D. G., Varadarajan V. S., Local moduli for meromorphic differential equations, Astérisque, 169–170, 1989, 217 pp. | MR | Zbl
[2] Biquard O., Boalch P., “Wild non-abelian Hodge theory on curves”, Compos. Math., 140 (2004), 179–204, arXiv: math.DG/0111098 | DOI | MR | Zbl
[3] Biswas I., Heu V., Hurtubise J., “Isomonodromic deformations of logarithmic connections and stability”, Math. Ann., 366 (2016), 121–140, arXiv: 1505.05327 | DOI | MR | Zbl
[4] Biswas I., Heu V., Hurtubise J., “Isomonodromic deformations and very stable vector bundles of rank two”, Comm. Math. Phys., 356 (2017), 627–640, arXiv: 1703.07203 | DOI | MR | Zbl
[5] Boalch P., “Symplectic manifolds and isomonodromic deformations”, Adv. Math., 163 (2001), 137–205, arXiv: 2002.00052 | DOI | MR | Zbl
[6] Boalch P., “Geometry and braiding of Stokes data; fission and wild character varieties”, Ann. of Math., 179 (2014), 301–365, arXiv: 1111.6228 | DOI | MR | Zbl
[7] Boalch P., Yamakawa D., Twisted wild character varieties, arXiv: 1512.08091
[8] Bremer C. L., Sage D. S., “Isomonodromic deformations of connections with singularities of parahoric formal type”, Comm. Math. Phys., 313 (2012), 175–208, arXiv: 1010.2292 | DOI | MR | Zbl
[9] Bremer C. L., Sage D. S., “Moduli spaces of irregular singular connections”, Int. Math. Res. Not., 2013 (2013), 1800–1872, arXiv: 1004.4411 | DOI | MR | Zbl
[10] Diarra K., Loray F., “Normal forms for rank two linear irregular differential equations and moduli spaces”, Period. Math. Hungar., 84 (2022), 303–320, arXiv: 1907.07678 | DOI | MR
[11] Inaba M.-a., “Moduli of parabolic connections on curves and the Riemann–Hilbert correspondence”, J. Algebraic Geom., 22 (2013), 407–480, arXiv: math.AG/0602004 | DOI | MR | Zbl
[12] Inaba M.-a., “Unfolding of the unramified irregular singular generalized isomonodromic deformation”, Bull. Sci. Math., 157 (2019), 102795, 121 pp., arXiv: 1903.08396 | DOI | MR | Zbl
[13] Inaba M.-a., “Moduli space of irregular singular parabolic connections of generic ramified type on a smooth projective curve”, Asian J. Math., 26 (2022), 1–36, arXiv: 1606.02369 | DOI | MR
[14] Inaba M.-a., Iwasaki K., Saito M.-H., “Moduli of stable parabolic connections, Riemann–Hilbert correspondence and geometry of Painlevé equation of type VI I”, Publ. Res. Inst. Math. Sci., 42 (2006), 987–1089, arXiv: math.AG/0309342 | DOI | MR | Zbl
[15] Inaba M.-a., Saito M.-H., “Moduli of unramified irregular singular parabolic connections on a smooth projective curve”, Kyoto J. Math., 53 (2013), 433–482, arXiv: 1203.0084 | DOI | MR | Zbl
[16] Jimbo M., Miwa T., Ueno K., “Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. I General theory and $\tau $-function”, Phys. D, 2 (1981), 306–352 | DOI | MR | Zbl
[17] Komyo A., Description of generalized isomonodromic deformations of rank two linear differential equationsusing apparent singularities, arXiv: 2003.08045
[18] Komyo A., “Hamiltonian structures of isomonodromic deformations on moduli spaces of parabolic connections”, J. Math. Soc. Japan, 74 (2022), 473–519, arXiv: 1611.03601 | DOI | MR | Zbl
[19] Krichever I., “Isomonodromy equations on algebraic curves, canonical transformations and Whitham equations”, Mosc. Math. J., 2 (2002), 717–752, arXiv: hep-th/0112096 | DOI | MR | Zbl
[20] Malgrange B., “Sur les déformations isomonodromiques. II Singularités irrégulières”, Mathematics and Physics (Paris, 1979/1982), Progr. Math., 37, Birkhäuser Boston, Boston, MA, 1983, 427–438 | MR
[21] Mochizuki T., Wild harmonic bundles and wild pure twistor $D$-modules, Astérisque, 340, 2011, x+607 pp., arXiv: 0803.1344 | MR | Zbl
[22] Pantev T., Toën B., “Moduli of flat connections on smooth varieties”, Algebr. Geom., 9 (2022), 266–310, arXiv: 1905.12124 | DOI | MR
[23] Sibuya Y., Linear differential equations in the complex domain: problems of analytic continuation, Transl. Math. Monogr., 82, Amer. Math. Soc., Providence, RI, 1990 | DOI | MR | Zbl
[24] Simpson C. T., “Harmonic bundles on noncompact curves”, J. Amer. Math. Soc., 3 (1990), 713–770 | DOI | MR | Zbl
[25] Simpson C. T., “Moduli of representations of the fundamental group of a smooth projective variety. I”, Inst. Hautes Études Sci. Publ. Math., 79 (1994), 47–129 | DOI | MR | Zbl
[26] Simpson C. T., “Moduli of representations of the fundamental group of a smooth projective variety. II”, Inst. Hautes Études Sci. Publ. Math., 80 (1994), 5–79 | DOI | MR
[27] van der Put M., Saito M.-H., “Moduli spaces for linear differential equations and the Painlevé equations”, Ann. Inst. Fourier (Grenoble), 59 (2009), 2611–2667, arXiv: 0902.1702 | DOI | MR | Zbl
[28] Wasow W., Asymptotic expansions for ordinary differential equations, Pure Appl. Math., 14, Interscience Publishers John Wiley Sons, Inc., New York, 1965 | MR | Zbl