Spin$^h$ Manifolds
Symmetry, integrability and geometry: methods and applications, Tome 19 (2023) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The concept of a ${\rm Spin}^h$-manifold, which is a cousin of Spin- and ${\rm Spin}^c$-manifolds, has been at the center of much research in recent years. This article discusses some of the highlights of this story.
Keywords: Spin-manifold, ${\rm Spin}^c$-manifold, embedding theorems, bundle invariants
Mots-clés : obstructions, ABS-isomophism.
@article{SIGMA_2023_19_a11,
     author = {H. Blaine Lawson Jr.},
     title = {Spin$^h$ {Manifolds}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2023},
     volume = {19},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a11/}
}
TY  - JOUR
AU  - H. Blaine Lawson Jr.
TI  - Spin$^h$ Manifolds
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2023
VL  - 19
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a11/
LA  - en
ID  - SIGMA_2023_19_a11
ER  - 
%0 Journal Article
%A H. Blaine Lawson Jr.
%T Spin$^h$ Manifolds
%J Symmetry, integrability and geometry: methods and applications
%D 2023
%V 19
%U http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a11/
%G en
%F SIGMA_2023_19_a11
H. Blaine Lawson Jr. Spin$^h$ Manifolds. Symmetry, integrability and geometry: methods and applications, Tome 19 (2023). http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a11/

[1] Albanese M., Milivojević A., “${\rm Spin}^h$ and further generalisations of spin”, J. Geom. Phys., 164 (2021), 104174, 13 pp., arXiv: 2008.04934 | DOI | MR | Zbl

[2] Albanese M., Milivojević A., “Corrigendum to "${\rm Spin}^h$ and further generalisations of spin"”, J. Geom. Phys., 184 (2023), 104709, 4 pp. | DOI | MR

[3] Anderson D., Universal coefficient theorems for K-theory, Mimeographed Notes, University of California, Berkeley, CA, 1969 https://faculty.tcu.edu/gfriedman/notes/Anderson-UCT.pdf

[4] Atiyah M. F., Bott R., Shapiro A., “Clifford modules”, Topology, 3:1 (1964), 3–38 | DOI | MR | Zbl

[5] Atiyah M. F., Hirzebruch F., “Riemann–Roch theorems for differentiable manifolds”, Bull. Amer. Math. Soc., 65 (1959), 276–281 | DOI | MR | Zbl

[6] Atiyah M. F., Singer I. M., “Index theory for skew-adjoint Fredholm operators”, Inst. Hautes Études Sci. Publ. Math., 37 (1969), 5–26 | DOI | MR | Zbl

[7] Avis S. J., Isham C. J., “Generalized Spin structures on four-dimensional space-times”, Comm. Math. Phys., 72 (1980), 103–118 | DOI | MR

[8] Back A., Freund P. G., Forger M., “New gravitational instantons and universal spin structures”, Phys. Lett. B, 77 (1978), 181–184 | DOI

[9] Bär C., “Elliptic symbols”, Math. Nachr., 201 (1999), 7–35 | DOI | MR | Zbl

[10] Bourguignon J.-P., Lawson Jr. H.B., “Yang–Mills theory: its physical origins and differential geometric aspects”, Seminar on Differential Geometry, Ann. of Math. Stud., 102, Princeton University Press, Princeton, N.J., 1982, 395–421 | MR

[11] Bourguignon J.-P., Lawson Jr. H.B., Simons J., “Stability and gap phenomena for Yang–Mills fields”, Proc. Nat. Acad. Sci. USA, 76 (1979), 1550–1553 | DOI | MR | Zbl

[12] Chen X., Bundles of irreducible Clifford modules and the existence of spin structures, Ph.D. Thesis, Stony Brook University, 2017 | MR

[13] Freed D. S., Hopkins M. J., “Reflection positivity and invertible topological phases”, Geom. Topol., 25 (2021), 1165–1330, arXiv: 1604.06527 | DOI | MR

[14] Hawking S. W., Pope C. N., “Generalized spin structures in quantum gravity”, Phys. Lett. B, 73 (1978), 42–43 | DOI | MR

[15] Hirzebruch F., Hopf H., “Felder von Flächenelementen in 4-dimensionalen Mannigfaltigkeiten”, Math. Ann., 136 (1958), 156–172 | DOI | MR | Zbl

[16] Hu J., Invariants of real vector bundles, Ph.D. Thesis, Stony Brook University, 2023

[17] Lawson Jr. H.B., Michelsohn M.-L., Spin geometry, Princeton Math. Ser., 38, Princeton University Press, Princeton, NJ, 1989 | MR | Zbl

[18] Lazaroiu C. I., Shahbazi C. S., “Real pinor bundles and real Lipschitz structures”, Asian J. Math., 23 (2019), 749–836, arXiv: 1606.07894 | DOI | MR | Zbl

[19] LeBrun C., “Twistors, self-duality, and spin$^c$ structures”, SIGMA, 17 (2021), 102, 11 pp., arXiv: 2108.01739 | DOI | MR | Zbl

[20] Morgan J. W., The Seiberg–Witten equations and applications to the topology of smooth four-manifolds, Math. Notes, 44, Princeton University Press, Princeton, NJ, 1996 | MR | Zbl

[21] Nagase M., “${\rm Spin}^q$ structures”, J. Math. Soc. Japan, 47 (1995), 93–119 | DOI | MR | Zbl

[22] Okonek C., Teleman A., “Quaternionic monopoles”, Comm. Math. Phys., 180 (1996), 363–388, arXiv: alg-geom/9505029 | DOI | MR | Zbl

[23] Shiozaki K., Shapourian H., Gomi K., Ryu S., “Many-body topological invariants for fermionic short-range entangled topological phases protected by antiunitary symmetries”, Phys. Rev. B, 98 (2018), 035151, 55 pp., arXiv: 1710.01886 | DOI

[24] Sullivan D., “On the Hauptvermutung for manifolds”, Bull. Amer. Math. Soc., 73 (1967), 598–600 | DOI | MR | Zbl

[25] Teichner P., Vogt E., All 4-manifolds have spin$^c$ structures, https://math.berkeley.edu/t̃eichner/Papers/spin.pdf

[26] Wang J., Wen X.-G., Witten E., “A new ${\rm SU}(2)$ anomaly”, J. Math. Phys., 60 (2019), 052301, 23 pp., arXiv: 1810.00844 | DOI | MR | Zbl