Manifolds of Lie-Group-Valued Cocycles and Discrete Cohomology
Symmetry, integrability and geometry: methods and applications, Tome 19 (2023) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Consider a compact group $G$ acting on a real or complex Banach Lie group $U$, by automorphisms in the relevant category, and leaving a central subgroup $K\le U$ invariant. We define the spaces ${}_KZ^n(G,U)$ of $K$-relative continuous cocycles as those maps ${G^n\to U}$ whose coboundary is a $K$-valued $(n+1)$-cocycle; this applies to possibly non-abelian $U$, in which case $n=1$. We show that the ${}_KZ^n(G,U)$ are analytic submanifolds of the spaces $C(G^n,U)$ of continuous maps $G^n\to U$ and that they decompose as disjoint unions of fiber bundles over manifolds of $K$-valued cocycles. Applications include: (a) the fact that ${Z^n(G,U)\subset C(G^n,U)}$ is an analytic submanifold and its orbits under the adjoint of the group of $U$-valued $(n-1)$-cochains are open; (b) hence the cohomology spaces $H^n(G,U)$ are discrete; (c) for unital $C^*$-algebras $A$ and $B$ with $A$ finite-dimensional the space of morphisms $A\to B$ is an analytic manifold and nearby morphisms are conjugate under the unitary group $U(B)$; (d) the same goes for $A$ and $B$ Banach, with $A$ finite-dimensional and semisimple; (e) and for spaces of projective representations of compact groups in arbitrary $C^*$ algebras (the last recovering a result of Martin's).
Keywords: Banach Lie group, Lie algebra, group cohomology, cocycle, coboundary, infinite-dimensional manifold, immersion, analytic, $C^*$-algebra, unitary group, Banach algebra, semisimple, Jacobson radical.
@article{SIGMA_2023_19_a105,
     author = {Alexandru Chirvasitu and Jun Peng},
     title = {Manifolds of {Lie-Group-Valued} {Cocycles} and {Discrete} {Cohomology}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2023},
     volume = {19},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a105/}
}
TY  - JOUR
AU  - Alexandru Chirvasitu
AU  - Jun Peng
TI  - Manifolds of Lie-Group-Valued Cocycles and Discrete Cohomology
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2023
VL  - 19
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a105/
LA  - en
ID  - SIGMA_2023_19_a105
ER  - 
%0 Journal Article
%A Alexandru Chirvasitu
%A Jun Peng
%T Manifolds of Lie-Group-Valued Cocycles and Discrete Cohomology
%J Symmetry, integrability and geometry: methods and applications
%D 2023
%V 19
%U http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a105/
%G en
%F SIGMA_2023_19_a105
Alexandru Chirvasitu; Jun Peng. Manifolds of Lie-Group-Valued Cocycles and Discrete Cohomology. Symmetry, integrability and geometry: methods and applications, Tome 19 (2023). http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a105/

[1] Adámek J., Rosický J., Locally presentable and accessible categories, London Math. Soc. Lecture Note Ser., 189, Cambridge University Press, Cambridge, 1994 | DOI | MR | Zbl

[2] An J., Wang Z., “Nonabelian cohomology with coefficients in Lie groups”, Trans. Amer. Math. Soc., 360 (2008), 3019–3040, arXiv: math.GR/0506625 | DOI | MR | Zbl

[3] Andruchow E., Corach G., Stojanoff D., “A geometric characterization of nuclearity and injectivity”, J. Funct. Anal., 133 (1995), 474–494 | DOI | MR | Zbl

[4] Arveson W., An invitation to $C^*$-algebras, Grad. Texts in Math., 39, Springer, New York, 1976 | DOI | MR | Zbl

[5] Baird T.J., “Cohomology of the space of commuting $n$-tuples in a compact Lie group”, Algebr. Geom. Topol., 7 (2007), 737–754, arXiv: math.AT/0610761 | DOI | MR | Zbl

[6] Black P., big-O notation https://www.nist.gov/dads/HTML/bigOnotation.html

[7] Borel A., Semisimple groups and Riemannian symmetric spaces, Texts Read. Math., 16, Hindustan Book Agency, New Delhi, 1998 | DOI | MR | Zbl

[8] Bourbaki N., Éléments de mathématique. Fasc. XXXIII Variétés différentielles et analytiques. Fascicule de résultats (Paragraphes 1 à 7), Actualités Sci. Indust., 1333, Hermann, Paris, 1967 | MR

[9] Bourbaki N., Éléments de mathématique. Fasc. XXXVI Variétés différentielles et analytiques. Fascicule de résultats (Paragraphes 8 à 15), Actualités Sci. Indust., 1347, Hermann, Paris, 1971 | MR

[10] Bourbaki N., Lie groups and Lie algebras, Chapters 1–3, Springer, Berlin, 1989 | MR | Zbl

[11] Brown K.S., Cohomology of groups, Grad. Texts in Math., 87, Springer, New York, 1982 | DOI | MR | Zbl

[12] Caenepeel S., Militaru G., Zhu S., Frobenius and separable functors for generalized module categories and nonlinear equations, Lecture Notes in Math., 1787, Springer, Berlin, 2002 | DOI | MR | Zbl

[13] Corach G., Galé J.E., “Averaging with virtual diagonals and geometry of representations”, Banach Algebras 97, De Gruyter, Berlin, 1998, 87–100 | DOI | MR | Zbl

[14] Corach G., Galé J.E., “On amenability and geometry of spaces of bounded representations”, J. Lond. Math. Soc., 59 (1999), 311–329 | DOI | MR | Zbl

[15] Dales H.G., Banach algebras and automatic continuity, London Math. Soc. Monog. New Series, 24, The Clarendon Press, Oxford University Press, New York, 2000 | MR

[16] Dales H.G., Aiena P., Eschmeier J., Laursen K., Willis G.A., Introduction to Banach algebras, operators, and harmonic analysis, London Math. Soc. Stud. Texts, 57, Cambridge University Press, Cambridge, 2003 | DOI | MR | Zbl

[17] Eisenbud D., Harris J., 3264 and all that. A second course in algebraic geometry, Cambridge University Press, Cambridge, 2016 | DOI | MR | Zbl

[18] Evens L., The cohomology of groups, Oxford Math. Monog., The Clarendon Press, New York, 1991 | DOI | MR

[19] Fulton W., Harris J., Representation theory. A first course, Grad. Texts in Math., 129, Springer, New York, 1991 | DOI | MR | Zbl

[20] Ginzburg V., Lectures on noncommutative geometry, arXiv: math.AG/0506603

[21] Hofmann K.H., Morris S.A.,, The structure of compact groups. A primer for the student – a handbook for the expert, De Gruyter Stud. Math., 25, De Gruyter, Berlin, 2020 | DOI | MR | Zbl

[22] Iwasawa K., “On some types of topological groups”, Ann. of Math., 50 (1949), 507–558 | DOI | MR | Zbl

[23] Johnson B.E., Cohomology in Banach algebras, Mem. Amer. Math. Soc., 127, American Mathematical Society, Providence, RI, 1972 | DOI | MR | Zbl

[24] Lam T.Y., A first course in noncommutative rings, Grad. Texts in Math., 131, Springer, New York, 2001 | DOI | MR | Zbl

[25] Lang S., Fundamentals of differential geometry, Grad. Texts in Math., 191, Springer, New York, 1999 | DOI | MR | Zbl

[26] Lawton S., Sikora A.S., “Varieties of characters”, Algebr. Represent. Theory, 20 (2017), 1133–1141, arXiv: 1604.02164 | DOI | MR | Zbl

[27] Martin M., “Projective representations of compact groups in $C^*$-algebras”, Linear Operators in Function {S}paces, Oper. Theory Adv. Appl., 43, Birkhäuser, Basel, 1990, 237–253 | DOI | MR

[28] Milnor J.W., Stasheff J.D., Characteristic classes, Ann. of Math. Stud., 76, Princeton University Press, Princeton, NJ, 1974 | DOI | MR | Zbl

[29] Montgomery D., Zippin L., “A theorem on Lie groups”, Bull. Amer. Math. Soc., 48 (1942), 448–452 | DOI | MR | Zbl

[30] Moore C.C., “Extensions and low dimensional cohomology theory of locally compact groups. I”, Trans. Amer. Math. Soc., 113 (1964), 40–63 | DOI | MR | Zbl

[31] Mumford D., Fogarty J., Kirwan F., Geometric invariant theory, Ergeb. Math. Grenzgeb. (2), 34, Springer, Berlin, 1994 | MR | Zbl

[32] Munkres J.R., Topology, Prentice Hall, Inc., Upper Saddle River, NJ, 2000 | MR | Zbl

[33] Neeb K.-H., “Infinite-dimensional groups and their representations”, Lie Theory, Progr. Math., 228, Birkhäuser Boston, Boston, MA, 2004, 213–328 | DOI | MR | Zbl

[34] Neeb K.-H., “Towards a Lie theory of locally convex groups”, Jpn. J. Math., 1 (2006), 291–468, arXiv: 1501.06269 | DOI | MR | Zbl

[35] Omori H., Infinite-dimensional Lie groups, Transl. Math. Monogr., 158, American Mathematical Society, Providence, RI, 1997 | DOI | MR | Zbl

[36] Pierce R.S., Associative algebras, Grad. Texts in Math., 88, Springer, New York, 1982 | DOI | MR | Zbl

[37] Pothoven K., “Projective and injective objects in the category of Banach spaces”, Proc. Amer. Math. Soc., 22 (1969), 437–438 | DOI | MR | Zbl

[38] Pressley A., Segal G., Loop groups, Oxford Math. Monog., The Clarendon Press, Oxford University Press, New York, 1986 | MR

[39] Rotman J.J., An introduction to homological algebra, Universitext, Springer, New York, 2009 | DOI | MR | Zbl

[40] Runde V., Lectures on amenability, Lecture Notes in Math., 1774, Springer, Berlin, 2002 | DOI | MR | Zbl

[41] Ryan R.A., Introduction to tensor products of Banach spaces, Springer Monogr. Math., Springer, London, 2002 | DOI | MR | Zbl

[42] Serre J.-P., Local fields, Grad. Texts in Math., 67, Springer, New York, 1979 | DOI | MR | Zbl

[43] Serre J.-P., Lie algebras and Lie groups: 1964 lectures given at Harvard University, Lecture Notes in Math., 1500, Springer, Berlin, 1992 | DOI | MR | Zbl

[44] Serre J.-P., Galois cohomology, Springer, Berlin, 1997 | DOI | MR | Zbl

[45] Takesaki M., Theory of operator algebras II, Encyclopaedia Math. Sci., 125, Springer, Berlin, 2003 | DOI | MR | Zbl

[46] Torres Giese E., Sjerve D., “Fundamental groups of commuting elements in Lie groups”, Bull. Lond. Math. Soc., 40 (2008), 65–76 | DOI | MR | Zbl

[47] Upmeier H., Symmetric Banach manifolds and Jordan $C^\ast$-algebras, North-Holland Math. Stud., 104, North-Holland Publishing Co., Amsterdam, 1985 | MR | Zbl

[48] Wegge-Olsen N.E., $K$-theory and $C^*$-algebras. A friendly approach, Oxford Sci. Publ., The Clarendon Press, New York, 1993 | DOI | MR

[49] Wilansky A., Modern methods in topological vector spaces, McGraw-Hill International Book Co., New York, 1978 | MR | Zbl