Mots-clés : Poisson algebras.
@article{SIGMA_2023_19_a104,
author = {Yoshiyuki Kimura and Fan Qin and Qiaoling Wei},
title = {Twist {Automorphisms} and {Poisson} {Structures}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2023},
volume = {19},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a104/}
}
Yoshiyuki Kimura; Fan Qin; Qiaoling Wei. Twist Automorphisms and Poisson Structures. Symmetry, integrability and geometry: methods and applications, Tome 19 (2023). http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a104/
[1] Allegretti D.G.L., “Categorified canonical bases and framed BPS states”, Selecta Math. (N. S.), 25 (2019), 69, 50 pp., arXiv: 1806.10394 | DOI | MR | Zbl
[2] Berenstein A., Fomin S., Zelevinsky A., “Parametrizations of canonical bases and totally positive matrices”, Adv. Math., 122 (1996), 49–149 | DOI | MR | Zbl
[3] Berenstein A., Fomin S., Zelevinsky A., “Cluster algebras III: Upper bounds and double Bruhat cells”, Duke Math. J., 126 (2005), 1–52, arXiv: math.RT/0305434 | DOI | MR | Zbl
[4] Berenstein A., Zelevinsky A., “Total positivity in Schubert varieties”, Comment. Math. Helv., 72 (1997), 128–166 | DOI | MR | Zbl
[5] Berenstein A., Zelevinsky A., “Quantum cluster algebras”, Adv. Math., 195 (2005), 405–455, arXiv: math.QA/0404446 | DOI | MR | Zbl
[6] Chang W., Schiffler R., “Cluster automorphisms and quasi-automorphisms”, Adv. in Appl. Math., 110 (2019), 342–374, arXiv: 1808.02108 | DOI | MR | Zbl
[7] Derksen H., Weyman J., Zelevinsky A., “Quivers with potentials and their representations II: Applications to cluster algebras”, J. Amer. Math. Soc., 23 (2010), 749–790, arXiv: 0904.0676 | DOI | MR | Zbl
[8] Dupont G., “Generic variables in acyclic cluster algebras”, J. Pure Appl. Algebra, 215 (2011), 628–641, arXiv: 1006.0166 | DOI | MR
[9] Fock V.V., Goncharov A.B., “Moduli spaces of local systems and higher Teichmüller theory”, Publ. Math. Inst. Hautes Études Sci., 2006, 1–211, arXiv: math.AG/0311149 | DOI | MR | Zbl
[10] Fock V.V., Goncharov A.B., “Cluster ensembles, quantization and the dilogarithm”, Ann. Sci. Éc. Norm. Supér., 42 (2009), 865–930, arXiv: math.AG/0311245 | DOI | MR | Zbl
[11] Fock V.V., Goncharov A.B., “The quantum dilogarithm and representations of quantum cluster varieties”, Invent. Math., 175 (2009), 223–286, arXiv: math.QA/0702397 | DOI | MR | Zbl
[12] Fomin S., Shapiro M., Thurston D., “Cluster algebras and triangulated surfaces. Part I: Cluster complexes”, Acta Math., 201 (2008), 83–146, arXiv: math.RA/0608367 | DOI | MR | Zbl
[13] Fomin S., Zelevinsky A., “Cluster algebras I: Foundations”, J. Amer. Math. Soc., 15 (2002), 497–529, arXiv: math.RT/0104151 | DOI | MR | Zbl
[14] Fraser C., “Quasi-homomorphisms of cluster algebras”, Adv. in Appl. Math., 81 (2016), 40–77, arXiv: 1509.05385 | DOI | MR | Zbl
[15] Geiß C., Leclerc B., Schröer J., “Kac–Moody groups and cluster algebras”, Adv. Math., 228 (2011), 329–433, arXiv: 1001.3545 | DOI | MR | Zbl
[16] Geiß C., Leclerc B., Schröer J., “Generic bases for cluster algebras and the Chamber Ansatz”, J. Amer. Math. Soc., 25 (2012), 21–76, arXiv: 1004.2781 | DOI | MR | Zbl
[17] Geiß C., Leclerc B., Schröer J., “Cluster structures on quantum coordinate rings”, Selecta Math. (N. S.), 19 (2013), 337–397, arXiv: 1104.0531 | DOI | MR | Zbl
[18] Gekhtman M., Nakanishi T., Rupel D., “Hamiltonian and Lagrangian formalisms of mutations in cluster algebras and application to dilogarithm identities”, J. Integrable Syst., 2 (2017), xyx005, 35 pp., arXiv: 1611.02813 | DOI | MR | Zbl
[19] Gekhtman M., Shapiro M., Vainshtein A., “Cluster algebras and Poisson geometry”, Mosc. Math. J., 3 (2003), 899–934, arXiv: math.QA/0208033 | DOI | MR | Zbl
[20] Gekhtman M., Shapiro M., Vainshtein A., “Cluster algebras and Weil–Petersson forms”, Duke Math. J., 127 (2005), 291–311, arXiv: math.QA/0309138 | DOI | MR | Zbl
[21] Goodearl K.R., Yakimov M.T., Quantum cluster algebra structures on quantum nilpotent algebras, Mem. Amer. Math. Soc., 247, 2017, vii+119 pp., arXiv: 1309.7869 | DOI | MR
[22] Goodearl K.R., Yakimov M.T., “The Berenstein–Zelevinsky quantum cluster algebra conjecture”, J. Eur. Math. Soc. (JEMS), 22 (2020), 2453–2509, arXiv: 1602.00498 | DOI | MR | Zbl
[23] Goodearl K.R., Yakimov M.T., “Integral quantum cluster structures”, Duke Math. J., 170 (2021), 1137–1200, arXiv: 2003.04434 | DOI | MR | Zbl
[24] Gross M., Hacking P., Keel S., “Birational geometry of cluster algebras”, Algebr. Geom., 2 (2015), 137–175, arXiv: 1309.2573 | DOI | MR | Zbl
[25] Gross M., Hacking P., Keel S., Kontsevich M., “Canonical bases for cluster algebras”, J. Amer. Math. Soc., 31 (2018), 497–608, arXiv: 1411.1394 | DOI | MR | Zbl
[26] Ip I.C.H., “Cluster realization of $\mathcal{U_q(\mathfrak{g})}$ and factorizations of the universal $R$-matrix”, Selecta Math. (N. S.), 24 (2018), 4461–4553, arXiv: 1612.05641 | DOI | MR | Zbl
[27] Kang S.-J., Kashiwara M., Kim M., Oh S.-J., “Monoidal categorification of cluster algebras”, J. Amer. Math. Soc., 31 (2018), 349–426, arXiv: 1412.8106 | DOI | MR | Zbl
[28] Kashiwara M., “On crystal bases of the $Q$-analogue of universal enveloping algebras”, Duke Math. J., 63 (1991), 465–516 | DOI | MR | Zbl
[29] Kashiwara M., Kim M., “Laurent phenomenon and simple modules of quiver Hecke algebras”, Compos. Math., 155 (2019), 2263–2295, arXiv: 1811.02237 | DOI | MR | Zbl
[30] Keller B., “On cluster theory and quantum dilogarithm identities”, Representations of Algebras and Related Topics, EMS Ser. Congr. Rep., Eur. Math. Soc., Zürich, 2011, 85–116, arXiv: 1102.4148 | DOI | MR | Zbl
[31] Keller B., “Cluster algebras and derived categories”, Derived Categories in Algebraic Geometry, EMS Ser. Congr. Rep., Zürich; Eur. Math. Soc., 2012, 123–183, arXiv: 1202.4161 | DOI | MR | Zbl
[32] Kimura Y., “Quantum unipotent subgroup and dual canonical basis”, Kyoto J. Math., 52 (2012), 277–331, arXiv: 1010.4242 | DOI | MR | Zbl
[33] Kimura Y., Oya H., “Twist automorphisms on quantum unipotent cells and dual canonical bases”, Int. Math. Res. Not., 2021 (2021), 6772–6847, arXiv: 1701.02268 | DOI | MR | Zbl
[34] Lusztig G., “Canonical bases arising from quantized enveloping algebras”, J. Amer. Math. Soc., 3 (1990), 447–498 | DOI | MR | Zbl
[35] Lusztig G., “Quivers, perverse sheaves, and quantized enveloping algebras”, J. Amer. Math. Soc., 4 (1991), 365–421 | DOI | MR | Zbl
[36] Lusztig G., “Semicanonical bases arising from enveloping algebras”, Adv. Math., 151 (2000), 129–139 | DOI | MR | Zbl
[37] McNamara P., Cluster monomials are dual canonical, arXiv: 2112.04109
[38] Muller G., “The existence of a maximal green sequence is not invariant under quiver mutation”, Electron. J. Combin., 23 (2016), 2.47, 23 pp., arXiv: 1503.04675 | DOI | MR | Zbl
[39] Muller G., “Skein and cluster algebras of marked surfaces”, Quantum Topol., 7 (2016), 435–503, arXiv: 1204.0020 | DOI | MR | Zbl
[40] Nagao K., “Donaldson–Thomas theory and cluster algebras”, Duke Math. J., 162 (2013), 1313–1367, arXiv: 1002.4884 | DOI | MR | Zbl
[41] Nakanishi T., Zelevinsky A., “On tropical dualities in cluster algebras”, Algebraic Groups and Guantum Groups, Contemp. Math., 565, American Mathematical Society, Providence, RI, 2012, 217–226, arXiv: 1101.3736 | DOI | MR | Zbl
[42] Plamondon P.-G., “Generic bases for cluster algebras from the cluster category”, Int. Math. Res. Not., 2013 (2013), 2368–2420, arXiv: 1111.4431 | DOI | MR | Zbl
[43] Qin F., “$t$-analog of $q$-characters, bases of quantum cluster algebras, and a correction technique”, Int. Math. Res. Not., 2014 (2014), 6175–6232, arXiv: 1207.6604 | DOI | MR | Zbl
[44] Qin F., “Triangular bases in quantum cluster algebras and monoidal categorification conjectures”, Duke Math. J., 166 (2017), 2337–2442, arXiv: 1501.04085 | DOI | MR | Zbl
[45] Qin F., “Bases for upper cluster algebras and tropical points”, J. Eur. Math. Soc. (JEMS) (to appear) , arXiv: 1902.09507 | DOI
[46] Qin F., Cluster algebras and their bases, arXiv: 2108.09279
[47] Qin F., Dual canonical bases and quantum cluster algebras, arXiv: 2003.13674
[48] Schrader G., Shapiro A., $K$-theoretic Coulomb branches of quiver gauge theories and cluster varieties, arXiv: 1910.03186
[49] Schrader G., Shapiro A., “A cluster realization of $U_q(\mathfrak{sl}_n)$ from quantum character varieties”, Invent. Math., 216 (2019), 799–846, arXiv: 1607.00271 | DOI | MR | Zbl
[50] Scott J.S., “Grassmannians and cluster algebras”, Proc. London Math. Soc., 92 (2006), 345–380, arXiv: math.CO/0311148 | DOI | MR | Zbl
[51] Shen L., Cluster nature of quantum groups, arXiv: 2209.06258
[52] Tran T., “$F$-polynomials in quantum cluster algebras”, Algebr. Represent. Theory, 14 (2011), 1025–1061, arXiv: 0904.3291 | DOI | MR | Zbl