Mots-clés : polynomial expansions, Fourier coefficients.
@article{SIGMA_2023_19_a102,
author = {Stefan Kahler},
title = {Expansions and {Characterizations} of {Sieved} {Random} {Walk} {Polynomials}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2023},
volume = {19},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a102/}
}
Stefan Kahler. Expansions and Characterizations of Sieved Random Walk Polynomials. Symmetry, integrability and geometry: methods and applications, Tome 19 (2023). http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a102/
[1] Abramowitz M., Stegun I.A., Handbook of mathematical functions with formulas, graphs, and mathematical tables, National Bureau of Standards Applied Mathematics Series, 55, U.S. Government Printing Office, Washington, DC, 1964 | MR
[2] Al-Salam W., “Characterization theorems for orthogonal polynomials”, Orthogonal Polynomials, NATO Adv. Sci. Inst. Ser. C: Math. Phys. Sci., 294, Kluwer Academic Publishers Group, Dordrecht, 1990, 1–24 | DOI
[3] Al-Salam W., Allaway W.R., Askey R., “Sieved ultraspherical polynomials”, Trans. Amer. Math. Soc., 284 (1984), 39–55 | DOI | MR | Zbl
[4] Castillo K., de Jesus M.N., Petronilho J., “An electrostatic interpretation of the zeros of sieved ultraspherical polynomials”, J. Math. Phys., 61 (2020), 053501, 19 pp., arXiv: 1909.12062 | DOI | MR | Zbl
[5] Chihara T.S., An introduction to orthogonal polynomials, Math. Appl., 13, Gordon and Breach, New York, 1978 | MR | Zbl
[6] Coolen-Schrijner P., van Doorn E.A., “Analysis of random walks using orthogonal polynomials”, J. Comput. Appl. Math., 99 (1998), 387–399 | DOI | MR | Zbl
[7] Geronimo J.S., Van Assche W., “Orthogonal polynomials on several intervals via a polynomial mapping”, Trans. Amer. Math. Soc., 308 (1988), 559–581 | DOI | MR | Zbl
[8] Ismail M.E.H., Classical and quantum orthogonal polynomials in one variable, Encyclopedia of Mathematics and its Applications, 98, Cambridge University Press, Cambridge, 2009 | DOI | MR | Zbl
[9] Ismail M.E.H., Li X., “On sieved orthogonal polynomials. IX Orthogonality on the unit circle”, Pacific J. Math., 153 (1992), 289–297 | DOI | MR | Zbl
[10] Ismail M.E.H., Obermaier J., “Characterizations of continuous and discrete $q$-ultraspherical polynomials”, Canad. J. Math., 63 (2011), 181–199 | DOI | MR | Zbl
[11] Ismail M.E.H., Simeonov P., “Connection relations and characterizations of orthogonal polynomials”, Adv. in Appl. Math., 49 (2012), 134–164 | DOI | MR | Zbl
[12] Kahler S., Characterizations of orthogonal polynomials and harmonic analysis on polynomial hypergroups, Dissertation, Technical University of Munich, 2016 https://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:91-diss-20160530-1289608-1-3
[13] Kahler S., “Characterizations of ultraspherical polynomials and their $q$-analogues”, Proc. Amer. Math. Soc., 144 (2016), 87–101 | DOI | MR | Zbl
[14] Koekoek R., Lesky P.A., Swarttouw R.F., Hypergeometric orthogonal polynomials and their $q$-analogues, Springer Monogr. Math., Springer, Berlin, 2010 | DOI | MR | Zbl
[15] Lasser R., Obermaier J., “A new characterization of ultraspherical polynomials”, Proc. Amer. Math. Soc., 136 (2008), 2493–2498 | DOI | MR | Zbl
[16] van Doorn E.A., Schrijner P., “Random walk polynomials and random walk measures”, J. Comput. Appl. Math., 49 (1993), 289–296 | DOI | MR | Zbl
[17] Wu X.-B., Lin Y., Xu S.-X., Zhao Y.-Q., “Plancherel–Rotach type asymptotics of the sieved Pollaczek polynomials via the Riemann–Hilbert approach”, J. Approx. Theory, 208 (2016), 21–58 | DOI | MR | Zbl