Expansions and Characterizations of Sieved Random Walk Polynomials
Symmetry, integrability and geometry: methods and applications, Tome 19 (2023) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider random walk polynomial sequences $(P_n(x))_{n\in\mathbb{N}_0}\subseteq\mathbb{R}[x]$ given by recurrence relations $P_0(x)=1$, $P_1(x)=x$, $x P_n(x)=(1-c_n)P_{n+1}(x)+c_n P_{n-1}(x),$ $n\in\mathbb{N}$ with $(c_n)_{n\in\mathbb{N}}\subseteq(0,1)$. For every $k\in\mathbb{N}$, the $k$-sieved polynomials $(P_n(x;k))_{n\in\mathbb{N}_0}$ arise from the recurrence coefficients $c(n;k):=c_{n/k}$ if $k|n$ and $c(n;k):=1/2$ otherwise. A main objective of this paper is to study expansions in the Chebyshev basis $\{T_n(x)\colon n\in\mathbb{N}_0\}$. As an application, we obtain explicit expansions for the sieved ultraspherical polynomials. Moreover, we introduce and study a sieved version $\mathrm{D}_k$ of the Askey–Wilson operator $\mathcal{D}_q$. It is motivated by the sieved ultraspherical polynomials, a generalization of the classical derivative and obtained from $\mathcal{D}_q$ by letting $q$ approach a $k$-th root of unity. However, for $k\geq2$ the new operator $\mathrm{D}_k$ on $\mathbb{R}[x]$ has an infinite-dimensional kernel (in contrast to its ancestor), which leads to additional degrees of freedom and characterization results for $k$-sieved random walk polynomials. Similar characterizations are obtained for a sieved averaging operator $\mathrm{A}_k$.
Keywords: random walk polynomials, sieved polynomials, Askey–Wilson operator, averaging operator
Mots-clés : polynomial expansions, Fourier coefficients.
@article{SIGMA_2023_19_a102,
     author = {Stefan Kahler},
     title = {Expansions and {Characterizations} of {Sieved} {Random} {Walk} {Polynomials}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2023},
     volume = {19},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a102/}
}
TY  - JOUR
AU  - Stefan Kahler
TI  - Expansions and Characterizations of Sieved Random Walk Polynomials
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2023
VL  - 19
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a102/
LA  - en
ID  - SIGMA_2023_19_a102
ER  - 
%0 Journal Article
%A Stefan Kahler
%T Expansions and Characterizations of Sieved Random Walk Polynomials
%J Symmetry, integrability and geometry: methods and applications
%D 2023
%V 19
%U http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a102/
%G en
%F SIGMA_2023_19_a102
Stefan Kahler. Expansions and Characterizations of Sieved Random Walk Polynomials. Symmetry, integrability and geometry: methods and applications, Tome 19 (2023). http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a102/

[1] Abramowitz M., Stegun I.A., Handbook of mathematical functions with formulas, graphs, and mathematical tables, National Bureau of Standards Applied Mathematics Series, 55, U.S. Government Printing Office, Washington, DC, 1964 | MR

[2] Al-Salam W., “Characterization theorems for orthogonal polynomials”, Orthogonal Polynomials, NATO Adv. Sci. Inst. Ser. C: Math. Phys. Sci., 294, Kluwer Academic Publishers Group, Dordrecht, 1990, 1–24 | DOI

[3] Al-Salam W., Allaway W.R., Askey R., “Sieved ultraspherical polynomials”, Trans. Amer. Math. Soc., 284 (1984), 39–55 | DOI | MR | Zbl

[4] Castillo K., de Jesus M.N., Petronilho J., “An electrostatic interpretation of the zeros of sieved ultraspherical polynomials”, J. Math. Phys., 61 (2020), 053501, 19 pp., arXiv: 1909.12062 | DOI | MR | Zbl

[5] Chihara T.S., An introduction to orthogonal polynomials, Math. Appl., 13, Gordon and Breach, New York, 1978 | MR | Zbl

[6] Coolen-Schrijner P., van Doorn E.A., “Analysis of random walks using orthogonal polynomials”, J. Comput. Appl. Math., 99 (1998), 387–399 | DOI | MR | Zbl

[7] Geronimo J.S., Van Assche W., “Orthogonal polynomials on several intervals via a polynomial mapping”, Trans. Amer. Math. Soc., 308 (1988), 559–581 | DOI | MR | Zbl

[8] Ismail M.E.H., Classical and quantum orthogonal polynomials in one variable, Encyclopedia of Mathematics and its Applications, 98, Cambridge University Press, Cambridge, 2009 | DOI | MR | Zbl

[9] Ismail M.E.H., Li X., “On sieved orthogonal polynomials. IX Orthogonality on the unit circle”, Pacific J. Math., 153 (1992), 289–297 | DOI | MR | Zbl

[10] Ismail M.E.H., Obermaier J., “Characterizations of continuous and discrete $q$-ultraspherical polynomials”, Canad. J. Math., 63 (2011), 181–199 | DOI | MR | Zbl

[11] Ismail M.E.H., Simeonov P., “Connection relations and characterizations of orthogonal polynomials”, Adv. in Appl. Math., 49 (2012), 134–164 | DOI | MR | Zbl

[12] Kahler S., Characterizations of orthogonal polynomials and harmonic analysis on polynomial hypergroups, Dissertation, Technical University of Munich, 2016 https://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:91-diss-20160530-1289608-1-3

[13] Kahler S., “Characterizations of ultraspherical polynomials and their $q$-analogues”, Proc. Amer. Math. Soc., 144 (2016), 87–101 | DOI | MR | Zbl

[14] Koekoek R., Lesky P.A., Swarttouw R.F., Hypergeometric orthogonal polynomials and their $q$-analogues, Springer Monogr. Math., Springer, Berlin, 2010 | DOI | MR | Zbl

[15] Lasser R., Obermaier J., “A new characterization of ultraspherical polynomials”, Proc. Amer. Math. Soc., 136 (2008), 2493–2498 | DOI | MR | Zbl

[16] van Doorn E.A., Schrijner P., “Random walk polynomials and random walk measures”, J. Comput. Appl. Math., 49 (1993), 289–296 | DOI | MR | Zbl

[17] Wu X.-B., Lin Y., Xu S.-X., Zhao Y.-Q., “Plancherel–Rotach type asymptotics of the sieved Pollaczek polynomials via the Riemann–Hilbert approach”, J. Approx. Theory, 208 (2016), 21–58 | DOI | MR | Zbl