@article{SIGMA_2023_19_a101,
author = {Nelia Charalambous and Nadine Grosse},
title = {A {Note} on the {Spectrum} of {Magnetic} {Dirac} {Operators}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2023},
volume = {19},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a101/}
}
Nelia Charalambous; Nadine Grosse. A Note on the Spectrum of Magnetic Dirac Operators. Symmetry, integrability and geometry: methods and applications, Tome 19 (2023). http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a101/
[1] Agmon S., Lectures on exponential decay of solutions of second-order elliptic equations: bounds on eigenfunctions of $N$-body Schrödinger operators, Math. Notes, 29, Princeton University Press, Princeton, NJ, 1982 | MR | Zbl
[2] Ammann B., Große N., “$L^p$-spectrum of the Dirac operator on products with hyperbolic spaces”, Calc. Var. Partial Differential Equations, 55 (2016), 127, 36 pp., arXiv: 1405.2830 | DOI | MR | Zbl
[3] Cecchini S., Zeidler R., “Scalar curvature and generalized Callias operators”, Perspectives in Scalar Curvature, v. 1, World Scientific Publishing, Hackensack, NJ, 2023, 515–542 | DOI | MR
[4] Charalambous N., Lu Z., “On the spectrum of the Laplacian”, Math. Ann., 359 (2014), 211–238, arXiv: 1211.3225 | DOI | MR | Zbl
[5] Chernoff P.R., “Essential self-adjointness of powers of generators of hyperbolic equations”, J. Funct. Anal., 12 (1973), 401–414 | DOI | MR | Zbl
[6] Chernoff P.R., “Schrödinger and Dirac operators with singular potentials and hyperbolic equations”, Pacific J. Math., 72 (1977), 361–382 | DOI | MR | Zbl
[7] Cycon H.L., Froese R.G., Kirsch W., Simon B., Schrödinger operators, with application to quantum mechanics and global geometry, Texts Monog. Phys., Springer, Berlin, 1987 | DOI | MR | Zbl
[8] Friedrich T., Dirac-Operatoren in der Riemannschen Geometrie. Mit einem Ausblick auf die Seiberg–Witten-Theorie, Adv. Lect. Math., Friedr. Vieweg Sohn, Braunschweig, 1997 | DOI | MR
[9] Ginoux N., The Dirac spectrum, Lecture Notes in Math., 1976, Springer, Berlin, 2009 | DOI | MR | Zbl
[10] Helffer B., Semi-classical analysis for the Schrödinger operator and applications, Lecture Notes in Math., 1336, Springer, Berlin, 1988 | DOI | MR | Zbl
[11] Helffer B., Nourrigat J., Wang X.P., “Sur le spectre de l'équation de Dirac (dans ${\mathbb R}^3$ ou ${\mathbb R}^2$) avec champ magnétique”, Ann. Sci. École Norm. Sup., 22 (1989), 515–533 | DOI | MR | Zbl
[12] Lawson Jr. H.B., Michelsohn M.L., Spin geometry, Princeton Math. Ser., 38, Princeton University Press, Princeton, NJ, 1989 | MR | Zbl
[13] Miller K., Simon B., “Quantum magnetic Hamiltonians with remarkable spectral properties”, Phys. Rev. Lett., 44 (1980), 1706–1707 | DOI | MR | Zbl
[14] Paeng S.-H., “Relative volume comparison for asymptotically flat manifolds and rigidity of total mass”, Ann. Global Anal. Geom., 56 (2019), 567–580 | DOI | MR | Zbl
[15] Reed M., Simon B., Methods of modern mathematical physics. IV Analysis of operators, Academic Press, New York, 1978 | MR | Zbl
[16] Roe J., Elliptic operators, topology and asymptotic methods, Pitman Research Notes in Math. Ser., 395, Longman, Harlow, 1998 | DOI | MR | Zbl
[17] Savale N., “Koszul complexes, Birkhoff normal form and the magnetic Dirac operator”, Anal. PDE, 10 (2017), 1793–1844, arXiv: 1511.08545 | DOI | MR | Zbl
[18] Savale N., “A Gutzwiller type trace formula for the magnetic Dirac operator”, Geom. Funct. Anal., 28 (2018), 1420–1486, arXiv: 1806.10956 | DOI | MR | Zbl
[19] Shigekawa I., “Eigenvalue problems for the Schrödinger operator with the magnetic field on a compact Riemannian manifold”, J. Funct. Anal., 75 (1987), 92–127 | DOI | MR | Zbl
[20] Shigekawa I., “Spectral properties of Schrödinger operators with magnetic fields for a spin $\frac12$ particle”, J. Funct. Anal., 101 (1991), 255–285 | DOI | MR | Zbl
[21] Shubin M., “Essential self-adjointness for semi-bounded magnetic Schrödinger operators on non-compact manifolds”, J. Funct. Anal., 186 (2001), 92–116, arXiv: math.SP/0007019 | DOI | MR | Zbl
[22] Simon B., “Spectrum and continuum eigenfunctions of Schrödinger operators”, J. Funct. Anal., 42 (1981), 347–355 | DOI | MR | Zbl
[23] Thaller B., The Dirac equation, Texts Monog. Phys., Springer, Berlin, 1992 | DOI | MR
[24] Yamada O., “On the spectrum of Dirac operators with the unbounded potential at infinity”, Hokkaido Math. J., 26 (1997), 439–449 | DOI | MR | Zbl