On the Total CR Twist of Transversal Curves in the $3$-Sphere
Symmetry, integrability and geometry: methods and applications, Tome 19 (2023) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We investigate the total CR twist functional on transversal curves in the standard CR $3$-sphere $\mathrm S^3 \subset \mathbb C^2$. The question of the integration by quadratures of the critical curves and the problem of existence and properties of closed critical curves are addressed. A procedure for the explicit integration of general critical curves is provided and a characterization of closed curves within a specific class of general critical curves is given. Experimental evidence of the existence of infinite countably many closed critical curves is provided.
Keywords: CR $3$-sphere, total CR twist, Griffiths' formalism, integration by quadratures, closed critical curves.
Mots-clés : transversal curves, CR invariants, Lax formulation of E-L equations
@article{SIGMA_2023_19_a100,
     author = {Emilio Musso and Lorenzo Nicolodi},
     title = {On the {Total} {CR} {Twist} of {Transversal} {Curves} in the $3${-Sphere}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2023},
     volume = {19},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a100/}
}
TY  - JOUR
AU  - Emilio Musso
AU  - Lorenzo Nicolodi
TI  - On the Total CR Twist of Transversal Curves in the $3$-Sphere
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2023
VL  - 19
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a100/
LA  - en
ID  - SIGMA_2023_19_a100
ER  - 
%0 Journal Article
%A Emilio Musso
%A Lorenzo Nicolodi
%T On the Total CR Twist of Transversal Curves in the $3$-Sphere
%J Symmetry, integrability and geometry: methods and applications
%D 2023
%V 19
%U http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a100/
%G en
%F SIGMA_2023_19_a100
Emilio Musso; Lorenzo Nicolodi. On the Total CR Twist of Transversal Curves in the $3$-Sphere. Symmetry, integrability and geometry: methods and applications, Tome 19 (2023). http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a100/

[1] Bennequin D., “Entrelacements et équations de Pfaff”, Astérisque, 107, 1983, 87–161 | MR | Zbl

[2] Bryant R.L., “On notions of equivalence of variational problems with one independent variable”, Differential Geometry: the Interface Between Pure and Applied Mathematics (San Antonio, Tex., 1986), Contemp. Math., 68, American Mathematical Society, Providence, RI, 1987, 65–76 | DOI | MR

[3] Calabi E., Olver P.J., Shakiban C., Tannenbaum A., Haker S., “Differential and numerically invariant signature curves applied to object recognition”, Int. J. Comput. Vis., 26 (1998), 107–135 | DOI

[4] Calini A., Ivey T., “Integrable geometric flows for curves in pseudoconformal $S^3$”, J. Geom. Phys., 166 (2021), 104249, 17 pp. | DOI | MR | Zbl

[5] Cartan E., “Sur la géométrie pseudo-conforme des hypersurfaces de l'espace de deux variables complexes II”, Ann. Scuola Norm. Super. Pisa Cl. Sci. (2), 1 (1932), 333–354 | MR | Zbl

[6] Cartan E., “Sur la géométrie pseudo-conforme des hypersurfaces de l'espace de deux variables complexes”, Ann. Mat. Pura Appl., 11 (1933), 17–90 | DOI | MR

[7] Chern S.S., Moser J.K., “Real hypersurfaces in complex manifolds”, Acta Math., 133 (1974), 219–271 | DOI | MR

[8] Chiu H.-L., Ho P.T., “Global differential geometry of curves in three-dimensional Heisenberg group and CR sphere”, J. Geom. Anal., 29 (2019), 3438–3469 | DOI | MR | Zbl

[9] Dzhalilov A., Musso E., Nicolodi L., “Conformal geometry of timelike curves in the $(1+2)$-Einstein universe”, Nonlinear Anal., 143 (2016), 224–255, arXiv: 1603.01035 | DOI | MR | Zbl

[10] Eliashberg Y., “Legendrian and transversal knots in tight contact $3$-manifolds”, Topological Methods in Modern Mathematics (Stony Brook, NY, 1991), Publish or Perish, Houston, TX, 1993, 171–193 | MR | Zbl

[11] Eshkobilov O., Musso E., Nicolodi L., “The geometry of conformal timelike geodesics in the Einstein universe”, J. Math. Anal. Appl., 495 (2021), 124730, 32 pp. | DOI | MR | Zbl

[12] Etnyre J.B., “Introductory lectures on contact geometry”, Topology and Geometry of Manifolds (Athens, GA, 2001), Proc. Sympos. Pure Math., 71, American Mathematical Society, Providence, RI, 2003, 81–107 | DOI | MR | Zbl

[13] Etnyre J.B., “Transversal torus knots”, Geom. Topol., 3 (1999), 253–268, arXiv: math.GT/9906195 | DOI | MR | Zbl

[14] Etnyre J.B., “Legendrian and transversal knots”, Handbook of Knot Theory, Elsevier, Amsterdam, 2005, 105–185 | DOI | MR | Zbl

[15] Etnyre J.B., Honda K., “Knots and contact geometry I: Torus knots and the figure eight knot”, J. Symplectic Geom., 1 (2001), 63–120, arXiv: math.GT/0006112 | DOI | MR | Zbl

[16] Fels M., Olver P.J., “Moving coframes: I A practical algorithm”, Acta Appl. Math., 51 (1998), 161–213 | DOI | MR

[17] Fels M., Olver P.J., “Moving coframes: II Regularization and theoretical foundations”, Acta Appl. Math., 55 (1999), 127–208 | DOI | MR | Zbl

[18] Fuchs D., Tabachnikov S., “Invariants of Legendrian and transverse knots in the standard contact space”, Topology, 36 (1997), 1025–1053 | DOI | MR | Zbl

[19] Griffiths P.A., Exterior differential systems and the calculus of variations, Progr. Math., 25, Birkhäuser, Boston, MA, 1983 | DOI | MR | Zbl

[20] Hoffman W.C., “The visual cortex is a contact bundle”, Appl. Math. Comput., 32 (1989), 137–167 | DOI | MR | Zbl

[21] Hsu L., “Calculus of variations via the Griffiths formalism”, J. Differential Geom., 36 (1992), 551–589 | DOI | MR | Zbl

[22] Jacobowitz H., “Chains in CR geometry”, J. Differential Geom., 21 (1985), 163–194 | DOI | MR | Zbl

[23] Klein F., Vorlesungen über das Ikosaeder und die Auflösung der Gleichungen vom fünften Grade, Birkhäuser, Basel, 1993 | MR | Zbl

[24] Kogan I.A., Ruddy M., Vinzant C., “Differential signatures of algebraic curves”, SIAM J. Appl. Algebra Geom., 4 (2020), 185–226, arXiv: 1812.11388 | DOI | MR | Zbl

[25] Musso E., “Liouville integrability of a variational problem for Legendrian curves in the three-dimensional sphere”, Selected Topics in Cauchy–Riemann Geometry, Quad. Mat., 9, Seconda Università di Napoli, Caserta, 2001, 281–306 | MR

[26] Musso E., Grant J.D.E., “Coisotropic variational problems”, J. Geom. Phys., 50 (2004), 303–338, arXiv: math.DG/0307216 | DOI | MR | Zbl

[27] Musso E., Nicolodi L., “Closed trajectories of a particle model on null curves in anti-de Sitter 3-space”, Classical Quantum Gravity, 24 (2007), 5401–5411, arXiv: 0709.2017 | DOI | MR | Zbl

[28] Musso E., Nicolodi L., “Reduction for constrained variational problems on 3-dimensional null curves”, SIAM J. Control Optim., 47 (2008), 1399–1414 | DOI | MR | Zbl

[29] Musso E., Nicolodi L., “Invariant signatures of closed planar curves”, J. Math. Imaging Vision, 35 (2009), 68–85 | DOI | MR | Zbl

[30] Musso E., Nicolodi L., “Quantization of the conformal arclength functional on space curves”, Comm. Anal. Geom., 25 (2017), 209–242, arXiv: 1501.04101 | DOI | MR | Zbl

[31] Musso E., Nicolodi L., Salis F., “On the Cauchy–Riemann geometry of transversal curves in the 3-sphere”, J. Math. Phys. Anal. Geom., 16 (2020), 312–363, arXiv: 2004.11350 | DOI | MR | Zbl

[32] Musso E., Salis F., “The Cauchy–Riemann strain functional for Legendrian curves in the 3-sphere”, Ann. Mat. Pura Appl., 199 (2020), 2395–2434, arXiv: 2003.01713 | DOI | MR | Zbl

[33] Nash O., “On Klein's icosahedral solution of the quintic”, Expo. Math., 32 (2014), 99–120, arXiv: 1308.0955 | DOI | MR | Zbl

[34] Olver P.J., Applications of Lie groups to differential equations, Grad. Texts in Math., 107, Springer, New York, 1993 | DOI | MR | Zbl

[35] Olver P.J., Equivalence, invariants, and symmetry, Cambridge University Press, Cambridge, 1995 | DOI | MR | Zbl

[36] Petitot J., Elements of neurogeometry, Lect. Notes Morphog., Springer, Cham, 2017 | DOI | MR

[37] Storn R., Price K., “Differential evolution – A simple and efficient heuristic for global optimization over continuous spaces”, J. Global Optim., 11 (1997), 341–359 | DOI | MR

[38] Trott M., Adamchik V., Solving the quintic with Mathematica https://library.wolfram.com/infocenter/TechNotes/158/