@article{SIGMA_2023_19_a0,
author = {Maxim Olshanii},
title = {A {Novel} {Potential} {Featuring} {Off-Center} {Circular} {Orbits}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2023},
volume = {19},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a0/}
}
Maxim Olshanii. A Novel Potential Featuring Off-Center Circular Orbits. Symmetry, integrability and geometry: methods and applications, Tome 19 (2023). http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a0/
[1] Albouy A., Zhao L., “Darboux inversions of the Kepler problem”, Regul. Chaotic Dyn., 27 (2022), 253–280, arXiv: 2201.00808 | DOI | MR
[2] Arnold V., Huygens and Barrow, Newton and Hooke, Birkhäuser, Basel, 1990 | DOI | MR
[3] Arnold V.I., Mathematical methods of classical mechanics, 2nd ed., Springer, New York, 1989 | DOI | MR
[4] Arnold V.I., Vasilev V.A., “Newton's Principia read 300 years later”, Notices Amer. Math. Soc., 36 (1989), 1148–1154 ; Addendum, Notices Amer. Math. Soc., 37 (1990), 144–144 | MR | MR
[5] Bohlin M., “Note sur le problème des deux corps et sur une intégration nouvelle dans le problème des trois corps”, Bull. Astron., 28 (1911), 113–119 | DOI
[6] Goursat E., “Les transformation isogonales en méchanique”, C. R. Math. Acad. Sci. Paris, 108 (1887), 446–450
[7] Horvathy P., Zhang P., The laws of planetary motion, derived from those of a harmonic oscillator (following Arnold), arXiv: 1404.2265
[8] MacLaurin C., A treatise of fluxions, Ruddimans, Edinburgh, 1742
[9] Newton I., Mathematical principles of natural philosophy, Daniel Adee, New York, 1846 | MR
[10] Penrose R., The road to reality: a complete guide to the laws of the universe, Alfred A. Knopf, Inc., New York, 2005 | MR
[11] Rosenfeld B., Sergeeva N., Stereographic projection, Mir, M., 1977