The Linear Span of Uniform Matrix Product States
Symmetry, integrability and geometry: methods and applications, Tome 18 (2022) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The variety of uniform matrix product states arises both in algebraic geometry as a natural generalization of the Veronese variety, and in quantum many-body physics as a model for a translation-invariant system of sites placed on a ring. Using methods from linear algebra, representation theory, and invariant theory of matrices, we study the linear span of this variety.
Keywords: matrix product states, invariant theory of matrices.
@article{SIGMA_2022_18_a98,
     author = {Claudia De Lazzari and Harshit J. Motwani and Tim Seynnaeve},
     title = {The {Linear} {Span} of {Uniform} {Matrix} {Product} {States}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2022},
     volume = {18},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a98/}
}
TY  - JOUR
AU  - Claudia De Lazzari
AU  - Harshit J. Motwani
AU  - Tim Seynnaeve
TI  - The Linear Span of Uniform Matrix Product States
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2022
VL  - 18
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a98/
LA  - en
ID  - SIGMA_2022_18_a98
ER  - 
%0 Journal Article
%A Claudia De Lazzari
%A Harshit J. Motwani
%A Tim Seynnaeve
%T The Linear Span of Uniform Matrix Product States
%J Symmetry, integrability and geometry: methods and applications
%D 2022
%V 18
%U http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a98/
%G en
%F SIGMA_2022_18_a98
Claudia De Lazzari; Harshit J. Motwani; Tim Seynnaeve. The Linear Span of Uniform Matrix Product States. Symmetry, integrability and geometry: methods and applications, Tome 18 (2022). http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a98/

[1] Affleck I., Kennedy T., Lieb E.H., Tasaki H., “Valence bond ground states in isotropic quantum antiferromagnets”, Condensed Matter Physics and Exactly Soluble Models, CMS Conf. Proc., Springer, Berlin, 1988, 253–304 | DOI

[2] Bachmayr M., Schneider R., Uschmajew A., “Tensor networks and hierarchical tensors for the solution of high-dimensional partial differential equations”, Found. Comput. Math., 16 (2016), 1423–1472 | DOI

[3] Barthel T., Lu J., Friesecke G., “On the closedness and geometry of tensor network state sets”, Lett. Math. Phys., 112 (2022), 72, 33 pp., arXiv: 2108.00031 | DOI

[4] Bernardi A., De Lazzari C., Fulvio G., “Dimension of tensor network varieties”, Comm. Cont. Math. (to appear) , arXiv: 2101.03148 | DOI

[5] Buczyńska W., Buczyński J., Michałek M., “The Hackbusch conjecture on tensor formats”, J. Math. Pures Appl., 104 (2015), 749–761, arXiv: 1501.01120 | DOI

[6] Chen J., Cheng S., Xie H., Wang L., Xiang T., “Equivalence of restricted Boltzmann machines and tensor network states”, Phys. Rev. B, 97 (2018), 085104, 16 pp., arXiv: 1701.04831 | DOI

[7] Christandl M., Gesmundo F., Fran{ç}a D.S., Werner A.H., “Optimization at the boundary of the tensor network variety”, Phys. Rev. B, 103 (2021), 195139, 9 pp., arXiv: 2006.16963 | DOI

[8] Christandl M., Lucia A., Vrana P., Werner A.H., “Tensor network representations from the geometry of entangled states”, SciPost Phys., 9 (2020), 042, 31 pp., arXiv: 1809.08185 | DOI

[9] Cichocki A., Lee N., Oseledets I., Phan A.H., Zhao Q., Mandic D.P., “Tensor networks for dimensionality reduction and large-scale optimization: Part 1. Low-rank tensor decompositions”, Found. Trends Mach. Learn., 9 (2016), 249–429, arXiv: 1809.08185 | DOI

[10] Critch A., Morton J., “Algebraic geometry of matrix product states”, SIGMA, 10 (2014), 095, 10 pp., arXiv: 1210.2812 | DOI

[11] Czapliński A., Michałek M., Seynnaeve T., “Uniform matrix product states from an algebraic geometer's point of view”, Adv. in Appl. Math., 142 (2023), 102417, 25 pp., arXiv: 1904.07563 | DOI

[12] De Lazzari C., Algebraic, geometric and numerical methods for tensor network varieties, Ph.D. Thesis, University of Trento, 2022

[13] De Lazzari C., Motwani H.J., Seynnaeve T., The linear span of uniform matrix product states, GitHub repository, , 2022 https://github.com/harshitmotwani2015/uMPS/

[14] Dvir Z., Malod G., Perifel S., Yehudayoff A., “Separating multilinear branching programs and formulas”, STOC'12 – Proceedings of the 2012 ACM Symposium on Theory of Computing, ACM, New York, 2012, 615–623 | DOI

[15] Fannes M., Nachtergaele B., Werner R.F., “Finitely correlated states on quantum spin chains”, Comm. Math. Phys., 144 (1992), 443–490 | DOI

[16] Greene J., “Traces of matrix products”, Electron. J. Linear Algebra, 27 (2014), 716–734 | DOI

[17] Hackbusch W., Tensor spaces and numerical tensor calculus, Springer Ser. Comput. Math., 56, Springer, Cham, 2019 | DOI

[18] Hackl L., Guaita T., Shi T., Haegeman J., Demler E., Cirac J.I., “Geometry of variational methods: dynamics of closed quantum systems”, SciPost Phys., 9 (2020), 048, 100 pp., arXiv: 2004.01015 | DOI

[19] Haegeman J., Mariën M., Osborne T.J., Verstraete F., “Geometry of matrix product states: metric, parallel transport, and curvature”, J. Math. Phys., 55 (2014), 021902, 50 pp., arXiv: 1210.7710 | DOI

[20] Landsberg J.M., Tensors: geometry and applications, Grad. Stud. Math., 128, Amer. Math. Soc., Providence, RI, 2012 | DOI

[21] Landsberg J.M., Qi Y., Ye K., “On the geometry of tensor network states”, Quantum Inf. Comput., 12 (2012), 346–354, arXiv: 1105.4449

[22] Navascues M., Vertesi T., “Bond dimension witnesses and the structure of homogeneous matrix product states”, Quantum, 2 (2018), 50, 15 pp., arXiv: 1509.04507 | DOI

[23] Oseledets I.V., “Tensor-train decomposition”, SIAM J. Sci. Comput., 33 (2011), 2295–2317 | DOI

[24] Östlund S., Rommer S., “Thermodynamic limit of density matrix renormalization”, Phys. Rev. Lett., 75 (1995), 3537–3540, arXiv: cond-mat/9503107 | DOI

[25] Perez-Garcia D., Verstraete F., Wolf M.M., Cirac J.I., “Matrix product state representations”, Quantum Inf. Comput., 7 (2007), 401–430 , arXiv: http://hdl.handle.net/1854/LU-8589272quant-ph/0608197

[26] Pólya G., Read R.C., Combinatorial enumeration of groups, graphs, and chemical compounds, Springer, New York, 1987 | DOI

[27] Procesi C., “The invariant theory of $n\times n$ matrices”, Adv. Math., 19 (1976), 306–381 | DOI

[28] Robeva E., Seigal A., “Duality of graphical models and tensor networks”, Inf. Inference, 8 (2019), 273–288, arXiv: 1710.01437 | DOI

[29] Sibirskii K.S., “Algebraic invariants of a system of matrices”, Sib. Math. J., 9 (1968), 115–124 | DOI

[30] Stanley R.P., Algebraic combinatorics: walks, trees, tableaux, and more, Undergrad. Texts Math., Springer, New York, 2013 | DOI