@article{SIGMA_2022_18_a97,
author = {Jiryo Komeda and Shigeki Matsutani and Emma Previato},
title = {Complementary {Modules} of {Weierstrass} {Canonical} {Forms}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2022},
volume = {18},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a97/}
}
TY - JOUR AU - Jiryo Komeda AU - Shigeki Matsutani AU - Emma Previato TI - Complementary Modules of Weierstrass Canonical Forms JO - Symmetry, integrability and geometry: methods and applications PY - 2022 VL - 18 UR - http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a97/ LA - en ID - SIGMA_2022_18_a97 ER -
Jiryo Komeda; Shigeki Matsutani; Emma Previato. Complementary Modules of Weierstrass Canonical Forms. Symmetry, integrability and geometry: methods and applications, Tome 18 (2022). http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a97/
[1] Arbarello E., Cornalba M., Griffiths P.A., Harris J., Geometry of algebraic curves, v. I, Grundlehren Math. Wiss., 267, Springer, New York, 1985 | DOI
[2] Assi A., D'Anna M., García-Sánchez P.A., Numerical semigroups and applications, RSME Springer Series, 3, Springer, Cham, 2020 | DOI
[3] Baker H.F., Abelian functions: Abel's theorem and the allied theory of theta functions, Cambridge Math. Lib., Cambridge University Press, Cambridge, 1995
[4] Bresinsky H., “On prime ideals with generic zero $x_{i}=t^{n_{i}}$”, Proc. Amer. Math. Soc., 47 (1975), 329–332 | DOI
[5] Buchstaber V.M., Enolski V.Z., Leykin D.V., “$\sigma$-functions: old and new results”, Integrable Systems and Algebraic Geometry, v. 2, London Math. Soc. Lecture Note Ser., 459, Cambridge University Press, Cambridge, 2020, 175–214
[6] Coppens M., Kato T., “Weierstrass points with first two non-gaps equal to $n$ and $n+2$”, Kyushu J. Math., 68 (2014), 139–147 | DOI
[7] Dedekind R., Weber H., Theory of algebraic functions of one variable, Hist. Math., 39, Amer. Math. Soc., Providence, RI, 2012 | DOI
[8] Eilbeck J.C., Enolski V.Z., Matsutani S., Ônishi Y., Previato E., “Abelian functions for trigonal curves of genus three”, Int. Math. Res. Not., 2008 (2008), 140, 38 pp., arXiv: math.AG/0610019 | DOI
[9] Eilbeck J.C., Enolski V.Z., Matsutani S., Ônishi Y., Previato E., “Addition formulae over the Jacobian pre-image of hyperelliptic Wirtinger varieties”, J. Reine Angew. Math., 619 (2008), 37–48 | DOI
[10] Eilbeck J.C., Enolskii V.Z., Leykin D.V., “On the Kleinian construction of abelian functions of canonical algebraic curves”, SIDE III – Symmetries and Integrability of Difference Equations (Sabaudia, 1998), CRM Proc. Lecture Notes, 25, Amer. Math. Soc., Providence, RI, 2000, 121–138 | DOI
[11] Farkas H.M., Kra I., Riemann surfaces, Grad. Texts in Math., 71, Springer, New York, 1992 | DOI
[12] Fedorov Yu., Komeda J., Matsutani S., Previato E., Aomoto K., “The sigma function over a family of curves with a singular fiber”, Israel J. Math., 250 (2022), 345–402, arXiv: 1909.03858 | DOI
[13] Herzog J., “Generators and relations of abelian semigroups and semigroup rings”, Manuscripta Math., 3 (1970), 175–193 | DOI
[14] Igusa J.i., “Fibre systems of Jacobian varieties”, Amer. J. Math., 78 (1956), 171–199 | DOI
[15] Kato T., “Weierstrass normal form of a Riemann surface and its applications”, Sūgaku, 32 (1980), 73–75
[16] Kodama Y., Xie Y., “Space curves and solitons of the KP hierarchy. I The $l$-th generalized KdV hierarchy”, SIGMA, 17 (2021), 024, 43 pp., arXiv: 1912.06768 | DOI
[17] Komeda J., Matsutani S., “Jacobi inversion formulae for a curve in Weierstrass normal form”, Integrable Systems and Algebraic Geometry, v. 2, London Math. Soc. Lecture Note Ser., 459, Cambridge University Press, Cambridge, 2020, 383–404
[18] Komeda J., Matsutani S., Previato E., “The sigma function for Weierstrass semigoups $\langle3, 7, 8\rangle$ and $\langle6, 13, 14, 15, 16\rangle$”, Internat. J. Math., 24 (2013), 1350085, 58 pp., arXiv: 1303.0451 | DOI
[19] Komeda J., Matsutani S., Previato E., “The Riemann constant for a non-symmetric Weierstrass semigroup”, Arch. Math. (Basel), 107 (2016), 499–509, arXiv: 1604.02627 | DOI
[20] Komeda J., Matsutani S., Previato E., “The sigma function for trigonal cyclic curves”, Lett. Math. Phys., 109 (2019), 423–447, arXiv: 1712.00694 | DOI
[21] Komeda J., Matsutani S., Previato E., “Algebraic construction of the sigma functions for general Weierstrass curves”, Mathematics, 10 (2022), 3010, 31 pp., arXiv: 2207.02690 | DOI
[22] Korotkin D., Shramchenko V., “On higher genus Weierstrass sigma-function”, Phys. D, 241 (2012), 2086–2094, arXiv: 1201.3961 | DOI
[23] Kunz E., “The value-semigroup of a one-dimensional Gorenstein ring”, Proc. Amer. Math. Soc., 25 (1970), 748–751 | DOI
[24] Kunz E., Introduction to plane algebraic curves, Birkhäuser, Boston, MA, 2005 | DOI
[25] Matsumura H., Commutative ring theory, Cambridge Stud. Adv. Math., 8, Cambridge University Press, Cambridge, 1986 | DOI
[26] Matsutani S., Komeda J., “Sigma functions for a space curve of type $(3,4,5)$”, J. Geom. Symmetry Phys., 30 (2013), 75–91, arXiv: 1112.4137 | DOI
[27] Matsutani S., Previato E., “Jacobi inversion on strata of the Jacobian of the $C_{rs}$ curve $y^r=f(x)$”, J. Math. Soc. Japan, 60 (2008), 1009–1044 | DOI
[28] Matsutani S., Previato E., “Jacobi inversion on strata of the Jacobian of the $C_{rs}$ curve $y^r=f(x)$, II”, J. Math. Soc. Japan, 66 (2014), 647–692, arXiv: 1006.1090 | DOI
[29] Mumford D., Tata lectures on theta, v. I, Progr. Math., 28, Birkhäuser, Boston, MA, 1983 | DOI
[30] Mumford D., Tata lectures on theta. II Jacobian theta functions and differential equations, Progr. Math., 43, Birkhäuser, Boston, MA, 1984 | DOI
[31] Nakayashiki A., “Sigma function as a tau function”, Int. Math. Res. Not., 2010 (2010), 373–394, arXiv: 0904.0846 | DOI
[32] Nakayashiki A., “Tau function approach to theta functions”, Int. Math. Res. Not., 2016 (2016), 5202–5248, arXiv: 1504.01186 | DOI
[33] Ônishi Y., “Arithmetical power series expansion of the sigma function for a plane curve”, Proc. Edinb. Math. Soc. (2), 61 (2018), 995–1022 | DOI
[34] Pinkham H.C., Deformations of algebraic varieties with $G_{m}$ action, Astérisque, 20, 1974, i+131 pp.
[35] Sato M., Noumi M., “Soliton equation and universal Grassmann manifold”, Sophia Univ. Kokyuroku Math., 18 (1984), 1–131
[36] Segal G., Wilson G., “Loop groups and equations of KdV type”, Inst. Hautes Études Sci. Publ. Math., 61 (1985), 5–65 | DOI
[37] Stichtenoth H., Algebraic function fields and codes, Grad. Texts in Math., 254, Springer, Berlin, 2009 | DOI
[38] Weierstrass K., “Uber Normalformen algebraischer Gebilde”, Mathematische Werke III, Johnson Reprint Corp., New York, 1967, 297–307
[39] Weierstrass K., “Theorie der Abelschen Transcendenten”, Mathematische Werke IV, Johnson Reprint Corp., New York, 1967, 1875–1876
[40] Weierstrass K., “Theorie der Elliptischen Functionen”, Mathematische Werke V, Johnson Reprint Corp., New York, 1967, 1875–1876
[41] Whittaker E.T., Watson G.N., A course of modern analysis, Cambridge University Press, Cambridge, 1927