Weil Classes and Decomposable Abelian Fourfolds
Symmetry, integrability and geometry: methods and applications, Tome 18 (2022) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We determine which codimension two Hodge classes on $J\times J$, where $J$ is a general abelian surface, deform to Hodge classes on a family of abelian fourfolds of Weil type. If a Hodge class deforms, there is in general a unique such family. We show how to determine the imaginary quadratic field acting on the fourfolds of Weil type in this family as well as their polarization. There are Hodge classes that may deform to more than one family. We relate these to Markman's Cayley classes.
Keywords: abelian varieties, Hodge classes.
@article{SIGMA_2022_18_a96,
     author = {Bert van Geemen},
     title = {Weil {Classes} and {Decomposable} {Abelian} {Fourfolds}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2022},
     volume = {18},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a96/}
}
TY  - JOUR
AU  - Bert van Geemen
TI  - Weil Classes and Decomposable Abelian Fourfolds
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2022
VL  - 18
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a96/
LA  - en
ID  - SIGMA_2022_18_a96
ER  - 
%0 Journal Article
%A Bert van Geemen
%T Weil Classes and Decomposable Abelian Fourfolds
%J Symmetry, integrability and geometry: methods and applications
%D 2022
%V 18
%U http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a96/
%G en
%F SIGMA_2022_18_a96
Bert van Geemen. Weil Classes and Decomposable Abelian Fourfolds. Symmetry, integrability and geometry: methods and applications, Tome 18 (2022). http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a96/

[1] Ciliberto C., Mendes Lopes M., Roulleau X., “On Schoen surfaces”, Comment. Math. Helv., 90 (2015), 59–74, arXiv: 1303.1750 | DOI

[2] Fulton W., Harris J., Representation theory. A first course, Grad. Texts in Math., 129, Springer, New York, 1991 | DOI

[3] van Geemen B., “An introduction to the Hodge conjecture for abelian varieties”, Algebraic Cycles and Hodge Theory (Torino, 1993), Lecture Notes in Math., 1594, Springer, Berlin, 1994, 233–252 | DOI

[4] van Geemen B., “Theta functions and cycles on some abelian fourfolds”, Math. Z., 221 (1996), 617–631 | DOI

[5] van Geemen B., Verra A., “Quaternionic Pryms and Hodge classes”, Topology, 42 (2003), 35–53, arXiv: math.AG/0103111 | DOI

[6] Griffiths P., Harris J., Principles of algebraic geometry, Pure Appl. Math., Wiley-Interscience, New York, 1978

[7] Harris J., Algebraic geometry. A first course, Grad. Texts in Math., 133, Springer, New York, 1992 | DOI

[8] Hazama F., “Algebraic cycles on certain abelian varieties and powers of special surfaces”, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 31 (1985), 487–520

[9] Koike K., “Algebraicity of some Weil Hodge classes”, Canad. Math. Bull., 47 (2004), 566–572, arXiv: math.AG/0211304 | DOI

[10] Markman E., “The monodromy of generalized Kummer varieties and algebraic cycles on their intermediate Jacobians”, J. Eur. Math. Soc. (to appear) , arXiv: 1805.11574 | DOI

[11] Moonen B.J.J., Zarhin Y.G., “Hodge classes and Tate classes on simple abelian fourfolds”, Duke Math. J., 77 (1995), 553–581 | DOI

[12] Moonen B.J.J., Zarhin Yu.G., “Hodge classes on abelian varieties of low dimension”, Math. Ann., 315 (1999), 711–733, arXiv: math.AG/9901113 | DOI

[13] O'Grady K.G., “Compact tori associated to hyperkähler manifolds of Kummer type”, Int. Math. Res. Not., 2021 (2021), 12356–12419, arXiv: 1805.12075 | DOI

[14] Rito C., Roulleau X., Sarti A., “Explicit Schoen surfaces”, Algebr. Geom., 6 (2019), 410–426, arXiv: 1609.02235 | DOI

[15] Schoen C., “Hodge classes on self-products of a variety with an automorphism”, Compositio Math., 65 (1988), 3–32

[16] Schoen C., “Addendum to: “Hodge classes on self-products of a variety with an automorphism””, Compositio Math., 114 (1998), 329–336 | DOI

[17] Schoen C., “A family of surfaces constructed from genus 2 curves”, Internat. J. Math., 18 (2007), 585–612 | DOI

[18] Weil A., “Abelian varieties and the Hodge ring”, Collected Papers, v. III, Springer, New York, 1980, 421–429