@article{SIGMA_2022_18_a96,
author = {Bert van Geemen},
title = {Weil {Classes} and {Decomposable} {Abelian} {Fourfolds}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2022},
volume = {18},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a96/}
}
Bert van Geemen. Weil Classes and Decomposable Abelian Fourfolds. Symmetry, integrability and geometry: methods and applications, Tome 18 (2022). http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a96/
[1] Ciliberto C., Mendes Lopes M., Roulleau X., “On Schoen surfaces”, Comment. Math. Helv., 90 (2015), 59–74, arXiv: 1303.1750 | DOI
[2] Fulton W., Harris J., Representation theory. A first course, Grad. Texts in Math., 129, Springer, New York, 1991 | DOI
[3] van Geemen B., “An introduction to the Hodge conjecture for abelian varieties”, Algebraic Cycles and Hodge Theory (Torino, 1993), Lecture Notes in Math., 1594, Springer, Berlin, 1994, 233–252 | DOI
[4] van Geemen B., “Theta functions and cycles on some abelian fourfolds”, Math. Z., 221 (1996), 617–631 | DOI
[5] van Geemen B., Verra A., “Quaternionic Pryms and Hodge classes”, Topology, 42 (2003), 35–53, arXiv: math.AG/0103111 | DOI
[6] Griffiths P., Harris J., Principles of algebraic geometry, Pure Appl. Math., Wiley-Interscience, New York, 1978
[7] Harris J., Algebraic geometry. A first course, Grad. Texts in Math., 133, Springer, New York, 1992 | DOI
[8] Hazama F., “Algebraic cycles on certain abelian varieties and powers of special surfaces”, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 31 (1985), 487–520
[9] Koike K., “Algebraicity of some Weil Hodge classes”, Canad. Math. Bull., 47 (2004), 566–572, arXiv: math.AG/0211304 | DOI
[10] Markman E., “The monodromy of generalized Kummer varieties and algebraic cycles on their intermediate Jacobians”, J. Eur. Math. Soc. (to appear) , arXiv: 1805.11574 | DOI
[11] Moonen B.J.J., Zarhin Y.G., “Hodge classes and Tate classes on simple abelian fourfolds”, Duke Math. J., 77 (1995), 553–581 | DOI
[12] Moonen B.J.J., Zarhin Yu.G., “Hodge classes on abelian varieties of low dimension”, Math. Ann., 315 (1999), 711–733, arXiv: math.AG/9901113 | DOI
[13] O'Grady K.G., “Compact tori associated to hyperkähler manifolds of Kummer type”, Int. Math. Res. Not., 2021 (2021), 12356–12419, arXiv: 1805.12075 | DOI
[14] Rito C., Roulleau X., Sarti A., “Explicit Schoen surfaces”, Algebr. Geom., 6 (2019), 410–426, arXiv: 1609.02235 | DOI
[15] Schoen C., “Hodge classes on self-products of a variety with an automorphism”, Compositio Math., 65 (1988), 3–32
[16] Schoen C., “Addendum to: “Hodge classes on self-products of a variety with an automorphism””, Compositio Math., 114 (1998), 329–336 | DOI
[17] Schoen C., “A family of surfaces constructed from genus 2 curves”, Internat. J. Math., 18 (2007), 585–612 | DOI
[18] Weil A., “Abelian varieties and the Hodge ring”, Collected Papers, v. III, Springer, New York, 1980, 421–429