On the Signature of a Path in an Operator Algebra
Symmetry, integrability and geometry: methods and applications, Tome 18 (2022) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We introduce a class of operators associated with the signature of a smooth path $X$ with values in a $C^{\star}$ algebra $\mathcal{A}$. These operators serve as the basis of Taylor expansions of solutions to controlled differential equations of interest in noncommutative probability. They are defined by fully contracting iterated integrals of $X$, seen as tensors, with the product of $\mathcal{A}$. Were it considered that partial contractions should be included, we explain how these operators yield a trajectory on a group of representations of a combinatorial Hopf monoid. To clarify the role of partial contractions, we build an alternative group-valued trajectory whose increments embody full-contractions operators alone. We obtain therefore a notion of signature, which seems more appropriate for noncommutative probability.
Keywords: noncommutative probability, operads, duoidal categories.
Mots-clés : signature
@article{SIGMA_2022_18_a95,
     author = {Nicolas Gilliers and Carlo Bellingeri},
     title = {On the {Signature} of a {Path} in an {Operator} {Algebra}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2022},
     volume = {18},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a95/}
}
TY  - JOUR
AU  - Nicolas Gilliers
AU  - Carlo Bellingeri
TI  - On the Signature of a Path in an Operator Algebra
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2022
VL  - 18
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a95/
LA  - en
ID  - SIGMA_2022_18_a95
ER  - 
%0 Journal Article
%A Nicolas Gilliers
%A Carlo Bellingeri
%T On the Signature of a Path in an Operator Algebra
%J Symmetry, integrability and geometry: methods and applications
%D 2022
%V 18
%U http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a95/
%G en
%F SIGMA_2022_18_a95
Nicolas Gilliers; Carlo Bellingeri. On the Signature of a Path in an Operator Algebra. Symmetry, integrability and geometry: methods and applications, Tome 18 (2022). http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a95/

[1] Aguiar M., Mahajan S., Monoidal functors, species and Hopf algebras, CRM Monogr. Ser., 29, Amer. Math. Soc., Providence, RI, 2010 | DOI

[2] Aguiar M., Sottile F., “Structure of the Loday–Ronco Hopf algebra of trees”, J. Algebra, 295 (2006), 473–511, arXiv: math.CO/0409022 | DOI

[3] Biane P., Speicher R., “Free diffusions, free entropy and free Fisher information”, Ann. Inst. H. Poincaré Probab. Statist., 37 (2001), 581–606 | DOI

[4] Björner A., Wachs M.L., “Shellable nonpure complexes and posets. II”, Trans. Amer. Math. Soc., 349 (1997), 3945–3975 | DOI

[5] Bultel J.-P., Giraudo S., “Combinatorial Hopf algebras from PROs”, J. Algebraic Combin., 44 (2016), 455–493, arXiv: 1406.6903 | DOI

[6] Capitaine M., Donati-Martin C., “The Lévy area process for the free Brownian motion”, J. Funct. Anal., 179 (2001), 153–169 | DOI

[7] Chen K.-T., “Iterated integrals and exponential homomorphisms”, Proc. London Math. Soc., 4 (1954), 502–512 | DOI

[8] Deya A., Schott R., “On the rough-paths approach to non-commutative stochastic calculus”, J. Funct. Anal., 265 (2013), 594–628, arXiv: 1301.6238 | DOI

[9] Forcey S., Lauve A., Sottile F., “Hopf structures on the multiplihedra”, SIAM J. Discrete Math., 24 (2010), 1250–1271, arXiv: 0911.2057 | DOI

[10] Friz P.K., Hairer M., A course on rough paths, Universitext, Springer, Cham | DOI

[11] Gelfand I.M., Krob D., Lascoux A., Leclerc B., Retakh V.S., Thibon J.-Y., “Noncommutative symmetric functions”, Adv. Math., 112 (1995), 218–348, arXiv: hep-th/9407124 | DOI

[12] Ledoux M., Lyons T., Qian Z., “Lévy area of Wiener processes in Banach spaces”, Ann. Probab., 30 (2002), 546–578 | DOI

[13] Loday J.-L., Ronco M.O., “Hopf algebra of the planar binary trees”, Adv. Math., 139 (1998), 293–309 | DOI

[14] Loday J.-L., Vallette B., Algebraic operads, Grundlehren Math. Wiss., 346, Springer, Heidelberg, 2012 | DOI

[15] Lyons T.J., “Differential equations driven by rough signals”, Rev. Mat. Iberoamericana, 14 (1998), 215–310 | DOI

[16] Lyons T.J., Victoir N., “An extension theorem to rough paths”, Ann. Inst. H. Poincaré C Anal. Non Linéaire, 24 (2007), 835–847 | DOI

[17] Malvenuto C., Reutenauer C., “Duality between quasi-symmetric functions and the Solomon descent algebra”, J. Algebra, 177 (1995), 967–982 | DOI

[18] Patras F., Schocker M., “Trees, set compositions and the twisted descent algebra”, J. Algebraic Combin., 28 (2008), 3–23, arXiv: math.CO/0512227 | DOI

[19] Ryan R.A., Introduction to tensor products of Banach spaces, Springer Monogr. Math., Springer, London, 2002 | DOI

[20] Stanley R.P., Enumerative combinatorics, Cambridge Stud. Adv. Math., 2, Cambridge University Press, Cambridge, 1999 | DOI

[21] Vallette B., “A Koszul duality for PROPs”, Trans. Amer. Math. Soc., 359 (2007), 4865–4943, arXiv: math.AT/0411542 | DOI

[22] Victoir N., “Levy area for the free Brownian motion: existence and non-existence”, J. Funct. Anal., 208 (2004), 107–121 | DOI

[23] Young L.C., “An inequality of the Hölder type, connected with Stieltjes integration”, Acta Math., 67 (1936), 251–282 | DOI