@article{SIGMA_2022_18_a94,
author = {M\'arton Hablicsek and Jesse Vogel},
title = {Virtual {Classes} of {Representation} {Varieties} of {Upper} {Triangular} {Matrices} via {Topological} {Quantum} {Field} {Theories}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2022},
volume = {18},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a94/}
}
TY - JOUR AU - Márton Hablicsek AU - Jesse Vogel TI - Virtual Classes of Representation Varieties of Upper Triangular Matrices via Topological Quantum Field Theories JO - Symmetry, integrability and geometry: methods and applications PY - 2022 VL - 18 UR - http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a94/ LA - en ID - SIGMA_2022_18_a94 ER -
%0 Journal Article %A Márton Hablicsek %A Jesse Vogel %T Virtual Classes of Representation Varieties of Upper Triangular Matrices via Topological Quantum Field Theories %J Symmetry, integrability and geometry: methods and applications %D 2022 %V 18 %U http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a94/ %G en %F SIGMA_2022_18_a94
Márton Hablicsek; Jesse Vogel. Virtual Classes of Representation Varieties of Upper Triangular Matrices via Topological Quantum Field Theories. Symmetry, integrability and geometry: methods and applications, Tome 18 (2022). http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a94/
[1] Atiyah M., “Topological quantum field theories”, Inst. Hautes Études Sci. Publ. Math., 68 (1988), 175–186 | DOI
[2] Baraglia D., Hekmati P., “Arithmetic of singular character varieties and their $E$-polynomials”, Proc. Lond. Math. Soc., 114 (2017), 293–332, arXiv: 1602.06996 | DOI
[3] Bhunia S., “Conjugacy classes of centralizers in the group of upper triangular matrices”, J. Algebra Appl., 19 (2020), 2050008, 14 pp., arXiv: 1901.07869 | DOI
[4] Borisov L.A., “The class of the affine line is a zero divisor in the Grothendieck ring”, J. Algebraic Geom., 27 (2014), 203–209, arXiv: 1412.6194 | DOI
[5] Brown R., “Groupoids and van Kampen's theorem”, Proc. London Math. Soc., 17 (1967), 385–401 | DOI
[6] Culler M., Shalen P.B., “Varieties of group representations and splittings of $3$-manifolds”, Ann. of Math., 117 (1983), 109–146 | DOI
[7] Deligne P., “Théorie de Hodge. III”, Inst. Hautes Études Sci. Publ. Math., 44 (1974), 5–77 | DOI
[8] Florentino C., Lawton S., Ramras D., “Homotopy groups of free group character varieties”, Ann. Sc. Norm. Super. Pisa Cl. Sci., 17 (2017), 143–185, arXiv: 1412.0272 | DOI
[9] Florentino C., Silva J., “Hodge-Deligne polynomials of character varieties of free abelian groups”, Open Math., 19 (2021), 338–362, arXiv: 1711.07909 | DOI
[10] Frobenius G., Über Gruppencharaktere, Sitzungsberichte der Preußischen Akademie der Wissenschaften zu Berlin, Reichsdr., Wissenschaften Berlin, 1896
[11] González-Prieto A., Motivic theory of representation varieties via topological quantum field theories, arXiv: 1810.09714
[12] González-Prieto A., Topological quantum field theories for character varieties, Ph.D. Thesis, Universidad Complutense de Madrid, 2018, arXiv: 1812.11575
[13] González-Prieto A., “Virtual classes of parabolic ${\rm SL}_2(\mathbb C)$-character varieties”, Adv. Math., 368 (2020), 107148, 41 pp., arXiv: 1906.05222 | DOI
[14] González-Prieto A., Logares M., Muñoz V., “A lax monoidal topological quantum field theory for representation varieties”, Bull. Sci. Math., 161 (2020), 102871, 34 pp., arXiv: 1709.05724 | DOI
[15] González-Prieto A., Logares M., Muñoz V., “Representation variety for the rank one affine group”, Mathematical analysis in interdisciplinary research, Springer Optim. Appl., 179, Springer, Cham, 2021, 381–416, arXiv: 2005.01841 | DOI
[16] Hausel T., Rodriguez-Villegas F., Invent. Math., 174 (2008), Mixed Hodge polynomials of character varieties (with an appendix by Nicholas M Katz), arXiv: math.AG/0612668 | DOI
[17] Higman G., Proc. London Math. Soc., 3 (1960), Enumerating $p$-groups. I Inequalities | DOI
[18] Hitchin N.J., Proc. London Math. Soc., 55 (1987), The self-duality equations on a Riemann surface | DOI
[19] Kock J., Frobenius algebras and 2D topological quantum field theories, London Math. Soc. Stud. Texts, 59, Cambridge University Press, Cambridge, 2003 | DOI
[20] Lawton S., Sikora A.S., Algebr. Represent. Theory, 20 (2017), Varieties of characters, arXiv: 1604.02164 | DOI
[21] Letellier E., Rodriguez-Villegas F., $E$-series of character varieties of non-orientable surfaces, arXiv: 2008.13435
[22] Logares M., Muñoz V., Newstead P.E., Rev. Mat. Complut., 26 (2013), Hodge polynomials of ${\rm SL}(2,\mathbb{C})$-character varieties for curves of small genus | DOI
[23] Martin N., C. R. Math. Acad. Sci. Paris, 354 (2016), The class of the affine line is a zero divisor in the Grothendieck ring: an improvement, arXiv: 1604.06703 | DOI
[24] Martínez J., Muñoz V., Int. Math. Res. Not., 2016 (2016), $E$-polynomials of the ${\rm SL}(2,\mathbb C)$-character varieties of surface groups, arXiv: 1705.04649 | DOI
[25] Mellit A., Ann. of Math., 192 (2020), Poincaré polynomials of character varieties, Macdonald polynomials and affine Springer fibers, arXiv: 1710.04513 | DOI
[26] Mereb M., On the $E$-polynomials of a family of character varieties, Ph.D. Thesis, The University of Texas at Austin, 2010, arXiv: 1006.1286
[27] Milnor J., Lectures on the $h$-cobordism theorem, Princeton University Press, Princeton, N.J., 1965
[28] Nagata M., “Invariants of a group in an affine ring”, J. Math. Kyoto Univ., 3 (1964), 369–377 | DOI
[29] Newstead P.E., Introduction to moduli problems and orbit spaces, Tata Institute of Fundamental Research Lectures on Mathematics and Physics, 51, Tata Institute of Fundamental Research, Bombay, Narosa Publishing House, New Delhi, 1978
[30] Sikora A.S., “Character varieties of abelian groups”, Math. Z., 277 (2014), 241–256, arXiv: 1207.5284 | DOI
[31] Simpson C.T., “Higgs bundles and local systems”, Inst. Hautes Études Sci. Publ. Math., 75 (1992), 5–95 | DOI
[32] Simpson C.T., “Moduli of representations of the fundamental group of a smooth projective variety. II”, Inst. Hautes Études Sci. Publ. Math., 80 (1994), 5–79 | DOI
[33] Vogel J., Computing virtual classes of representation varieties using TQFTs, Master's thesis, Leiden University, 2020
[34] Vogel J., Grothendieck ring, https://github.com/jessetvogel/grothendieck-ring
[35] Witten E., “Topological quantum field theory”, Comm. Math. Phys., 117 (1988), 353–386 | DOI
[36] Witten E., “On quantum gauge theories in two dimensions”, Comm. Math. Phys., 141 (1991), 153–209 | DOI