Ray–Singer Torsion and the Rumin Laplacian on Lens Spaces
Symmetry, integrability and geometry: methods and applications, Tome 18 (2022) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We express explicitly the analytic torsion functions associated with the Rumin complex on lens spaces in terms of the Hurwitz zeta function. In particular, we find that the functions vanish at the origin and determine the analytic torsions. Moreover, we have a formula between this torsion and the Ray–Singer torsion.
Keywords: Rumin complex, CR geometry, contact geometry.
Mots-clés : analytic torsion
@article{SIGMA_2022_18_a90,
     author = {Akira Kitaoka},
     title = {Ray{\textendash}Singer {Torsion} and the {Rumin} {Laplacian} on {Lens} {Spaces}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2022},
     volume = {18},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a90/}
}
TY  - JOUR
AU  - Akira Kitaoka
TI  - Ray–Singer Torsion and the Rumin Laplacian on Lens Spaces
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2022
VL  - 18
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a90/
LA  - en
ID  - SIGMA_2022_18_a90
ER  - 
%0 Journal Article
%A Akira Kitaoka
%T Ray–Singer Torsion and the Rumin Laplacian on Lens Spaces
%J Symmetry, integrability and geometry: methods and applications
%D 2022
%V 18
%U http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a90/
%G en
%F SIGMA_2022_18_a90
Akira Kitaoka. Ray–Singer Torsion and the Rumin Laplacian on Lens Spaces. Symmetry, integrability and geometry: methods and applications, Tome 18 (2022). http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a90/

[1] Albin P., Quan H., “Sub-Riemannian limit of the differential form heat kernels of contact manifolds”, Int. Math. Res. Not., 2022 (2022), 5818–5881, arXiv: 1912.02326 | DOI

[2] Bismut J.M., Zhang W., An extension of a theorem by Cheeger and Müller (with an appendix by François Laudenbach), Astérisque, 205, 1992, 235 pp.

[3] de Melo T., Spreafico M., “Reidemeister torsion and analytic torsion of spheres”, J. Homotopy Relat. Struct., 4 (2009), 181–185, arXiv: 0906.2570

[4] Fulton W., Young tableaux: with applications to representation theory and geometry, London Math. Soc. Stud. Texts, 35, Cambridge University Press, Cambridge, 1996 | DOI

[5] Fulton W., Harris J., Representation theory. A first course, Grad. Texts in Math., 129, Springer-Verlag, New York, 1991 | DOI

[6] Goodman R., Wallach N.R., Symmetry, representations, and invariants, Grad. Texts in Math., 255, Springer, Dordrecht, 2009 | DOI

[7] Julg P., Kasparov G., “Operator $K$-theory for the group ${\rm SU}(n,1)$”, J. Reine Angew. Math., 463 (1995), 99–152 | DOI

[8] Kitaoka A., “Analytic torsions associated with the Rumin complex on contact spheres”, Internat. J. Math., 31 (2020), 2050112, 16 pp., arXiv: 1911.03092 | DOI

[9] Ponge R., “Noncommutative residue for Heisenberg manifolds. Applications in CR and contact geometry”, J. Funct. Anal., 252 (2007), 399–463, arXiv: math.DG/0607296 | DOI

[10] Ray D.B., “Reidemeister torsion and the Laplacian on lens spaces”, Adv. Math., 4 (1970), 109–126 | DOI

[11] Rosenberg S., The Laplacian on a Riemannian manifold: an introduction to analysis on manifolds, London Math. Soc. Stud. Texts, 31, Cambridge University Press, 1997 | DOI

[12] Rumin M., “Formes différentielles sur les variétés de contact”, J. Differential Geom., 39 (1994), 281–330 | DOI

[13] Rumin M., “Sub-Riemannian limit of the differential form spectrum of contact manifolds”, Geom. Funct. Anal., 10 (2000), 407–452 | DOI

[14] Rumin M., Seshadri N., “Analytic torsions on contact manifolds”, Ann. Inst. Fourier (Grenoble), 62 (2012), 727–782, arXiv: 0802.0123 | DOI

[15] Weng L., You Y., “Analytic torsions of spheres”, Internat. J. Math., 7 (1996), 109–125 | DOI