Mots-clés : analytic torsion
@article{SIGMA_2022_18_a90,
author = {Akira Kitaoka},
title = {Ray{\textendash}Singer {Torsion} and the {Rumin} {Laplacian} on {Lens} {Spaces}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2022},
volume = {18},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a90/}
}
Akira Kitaoka. Ray–Singer Torsion and the Rumin Laplacian on Lens Spaces. Symmetry, integrability and geometry: methods and applications, Tome 18 (2022). http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a90/
[1] Albin P., Quan H., “Sub-Riemannian limit of the differential form heat kernels of contact manifolds”, Int. Math. Res. Not., 2022 (2022), 5818–5881, arXiv: 1912.02326 | DOI
[2] Bismut J.M., Zhang W., An extension of a theorem by Cheeger and Müller (with an appendix by François Laudenbach), Astérisque, 205, 1992, 235 pp.
[3] de Melo T., Spreafico M., “Reidemeister torsion and analytic torsion of spheres”, J. Homotopy Relat. Struct., 4 (2009), 181–185, arXiv: 0906.2570
[4] Fulton W., Young tableaux: with applications to representation theory and geometry, London Math. Soc. Stud. Texts, 35, Cambridge University Press, Cambridge, 1996 | DOI
[5] Fulton W., Harris J., Representation theory. A first course, Grad. Texts in Math., 129, Springer-Verlag, New York, 1991 | DOI
[6] Goodman R., Wallach N.R., Symmetry, representations, and invariants, Grad. Texts in Math., 255, Springer, Dordrecht, 2009 | DOI
[7] Julg P., Kasparov G., “Operator $K$-theory for the group ${\rm SU}(n,1)$”, J. Reine Angew. Math., 463 (1995), 99–152 | DOI
[8] Kitaoka A., “Analytic torsions associated with the Rumin complex on contact spheres”, Internat. J. Math., 31 (2020), 2050112, 16 pp., arXiv: 1911.03092 | DOI
[9] Ponge R., “Noncommutative residue for Heisenberg manifolds. Applications in CR and contact geometry”, J. Funct. Anal., 252 (2007), 399–463, arXiv: math.DG/0607296 | DOI
[10] Ray D.B., “Reidemeister torsion and the Laplacian on lens spaces”, Adv. Math., 4 (1970), 109–126 | DOI
[11] Rosenberg S., The Laplacian on a Riemannian manifold: an introduction to analysis on manifolds, London Math. Soc. Stud. Texts, 31, Cambridge University Press, 1997 | DOI
[12] Rumin M., “Formes différentielles sur les variétés de contact”, J. Differential Geom., 39 (1994), 281–330 | DOI
[13] Rumin M., “Sub-Riemannian limit of the differential form spectrum of contact manifolds”, Geom. Funct. Anal., 10 (2000), 407–452 | DOI
[14] Rumin M., Seshadri N., “Analytic torsions on contact manifolds”, Ann. Inst. Fourier (Grenoble), 62 (2012), 727–782, arXiv: 0802.0123 | DOI
[15] Weng L., You Y., “Analytic torsions of spheres”, Internat. J. Math., 7 (1996), 109–125 | DOI