@article{SIGMA_2022_18_a9,
author = {Takanori Ayano and Victor M. Buchstaber},
title = {Relationships {Between} {Hyperelliptic} {Functions} of {Genus~}$2$ and {Elliptic} {Functions}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2022},
volume = {18},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a9/}
}
TY - JOUR AU - Takanori Ayano AU - Victor M. Buchstaber TI - Relationships Between Hyperelliptic Functions of Genus $2$ and Elliptic Functions JO - Symmetry, integrability and geometry: methods and applications PY - 2022 VL - 18 UR - http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a9/ LA - en ID - SIGMA_2022_18_a9 ER -
%0 Journal Article %A Takanori Ayano %A Victor M. Buchstaber %T Relationships Between Hyperelliptic Functions of Genus $2$ and Elliptic Functions %J Symmetry, integrability and geometry: methods and applications %D 2022 %V 18 %U http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a9/ %G en %F SIGMA_2022_18_a9
Takanori Ayano; Victor M. Buchstaber. Relationships Between Hyperelliptic Functions of Genus $2$ and Elliptic Functions. Symmetry, integrability and geometry: methods and applications, Tome 18 (2022). http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a9/
[1] Athorne C., Eilbeck J. C., Enolskii V. Z., “A ${\rm SL}(2)$ covariant theory of genus 2 hyperelliptic functions”, Math. Proc. Cambridge Philos. Soc., 136 (2004), 269–286 | DOI | MR | Zbl
[2] Ayano T., Buchstaber V. M., “Ultraelliptic integrals and two-dimensional sigma functions”, Funct. Anal. Appl., 53 (2019), 157–173 | DOI | MR | Zbl
[3] Ayano T., Buchstaber V. M., “Analytical and number-theoretical properties of the two-dimensional sigma function”, Chebyshevskiĭ Sb., 21 (2020), 9–50 | DOI | MR | Zbl
[4] Baker H. F., An introduction to the theory of multiply periodic functions, Cambridge University Press, Cambridge, 1907 | MR | Zbl
[5] Belokolos E. D., Bobenko A. I., Enol'skii V. Z., Its A. R., Matveev V. B., Algebro-geometric approach to nonlinear integrable equations, Springer Series in Nonlinear Dynamics, Springer-Verlag, Berlin, 1994 | Zbl
[6] Belokolos E. D., Enolskii V. Z., “Reduction of abelian functions and algebraically integrable systems. I”, J. Math. Sci., 106 (2001), 3395–3486 | DOI | MR | Zbl
[7] Belokolos E. D., Enolskii V. Z., “Reduction of abelian functions and algebraically integrable systems. II”, J. Math. Sci., 108 (2002), 295–374 | DOI | MR | Zbl
[8] Birkenhake C., Lange H., Complex abelian varieties, Grundlehren der mathematischen Wissenschaften, 302, 2nd ed., Springer-Verlag, Berlin, 2004 | DOI | MR | Zbl
[9] Birkenhake C., Wilhelm H., “Humbert surfaces and the Kummer plane”, Trans. Amer. Math. Soc., 355 (2003), 1819–1841 | DOI | MR | Zbl
[10] Bolza O., “Ueber die Reduction hyperelliptischer Integrale erster Ordnung und erster Gattung auf elliptische durch eine Transformation vierten Grades”, Math. Ann., 28 (1887), 447–456 | DOI | MR
[11] Bolza O., “Der singuläre Fall der Reduktion hyperelliptischer Integrale erster Ordnung auf elliptische durch eine Transformation dritten Grades”, Math. Ann., 111 (1935), 477–500 | DOI | MR
[12] Braeger N., Clingher A., Malmendier A., Spatig S., “Isogenies of certain K3 surfaces of rank 18”, Res. Math. Sci., 8 (2021), 57, 60 pp., arXiv: 2109.03189 | DOI | MR | Zbl
[13] Bröker R., Lauter K., Streng M., “Abelian surfaces admitting an $(l,l)$-endomorphism”, J. Algebra, 394 (2013), 374–396 | DOI | MR | Zbl
[14] Bruin N., Doerksen K., “The arithmetic of genus two curves with $(4,4)$-split Jacobians”, Canad. J. Math., 63 (2011), 992–1024 | DOI | MR
[15] Buchstaber V. M., Enolskii V. Z., Leykin D. V., “Hyperelliptic Kleinian functions and applications”, Solitons, Geometry, and Topology: on the Crossroad, Amer. Math. Soc. Transl. Ser. 2, 179, Amer. Math. Soc., Providence, RI, 1997, 1–33, arXiv: solv-int/9603005 | DOI | MR
[16] Buchstaber V. M., Enolskii V. Z., Leykin D. V., “Kleinian functions, hyperelliptic Jacobians and applications”, Rev. Math. Math. Phys., 10 (1997), 3–120 | MR | Zbl
[17] Buchstaber V. M., Enolskii V. Z., Leykin D. V., Hyperelliptic abelian functions, 1997 https://www.researchgate.net/publication/266955336_Kleinian_functions_hyperelliptic_Jacobians_and_applications
[18] Buchstaber V. M., Enolskii V. Z., Leykin D. V., “Rational analogues of abelian functions”, Funct. Anal. Appl., 33 (1999), 83–94 | DOI | MR | Zbl
[19] Buchstaber V. M., Enolskii V. Z., Leykin D. V., Multi-dimensional sigma-functions, arXiv: 1208.0990
[20] Buchstaber V. M., Leykin D. V., “Heat equations in a nonholonomic frame”, Funct. Anal. Appl., 38 (2004), 88–101 | DOI | MR | Zbl
[21] Cassels J. W.S., Flynn E. V., Prolegomena to a middlebrow arithmetic of curves of genus $2$, London Mathematical Society Lecture Note Series, 230, Cambridge University Press, Cambridge, 1996 | DOI | MR | Zbl
[22] Coppini F., Grinevich P. G., Santini P. M., “Effect of a small loss or gain in the periodic nonlinear Schrödinger anomalous wave dynamics”, Phys. Rev. E, 101 (2020), 032204, 8 pp. | DOI | MR
[23] Enolski V. Z., Hackmann E., Kagramanova V., Kunz J., Lämmerzahl C., “Inversion of hyperelliptic integrals of arbitrary genus with application to particle motion in general relativity”, J. Geom. Phys., 61 (2011), 899–921 | DOI | MR | Zbl
[24] Enolski V. Z., Hartmann B., Kagramanova V., Kunz J., Lämmerzahl C., Sirimachan P., “Inversion of a general hyperelliptic integral and particle motion in Hořava–Lifshitz black hole space-times”, J. Math. Phys., 53 (2012), 012504, 35 pp., arXiv: 1106.2408 | DOI | MR | Zbl
[25] Enolskii V. Z., Salerno M., “Lax representation for two-particle dynamics splitting on two tori”, J. Phys. A: Math. Gen., 29 (1996), L425–L431, arXiv: solv-int/9603004 | DOI | Zbl
[26] Fay J. D., Theta functions on Riemann surfaces, Lecture Notes in Math., 352, Springer-Verlag, Berlin – New York, 1973 | DOI | MR | Zbl
[27] Flynn E. V., “Coverings of curves of genus 2”, Algorithmic Number Theory (Leiden, 2000), Lecture Notes in Comput. Sci., 1838, ed. W. Bosma, Springer, Berlin, 2000, 65–84 | DOI | MR | Zbl
[28] Frey G., Kani E., “Curves of genus $2$ covering elliptic curves and an arithmetical application”, Arithmetic Algebraic Geometry (Texel, 1989), Progr. Math., 89, eds. G. van der Geer, F. Oort, J. Steenbrink, Birkhäuser Boston, Boston, MA, 1991, 153–176 | DOI | MR
[29] Göb N., Automorphism groups of hyperelliptic function fields, Ph.D. Thesis, Technische Universität Kaiserslautern, 2004
[30] Grant D., “Formal groups in genus two”, J. Reine Angew. Math., 411 (1990), 96–121 | DOI | MR | Zbl
[31] Howe E. W., Leprévost F., Poonen B., “Large torsion subgroups of split Jacobians of curves of genus two or three”, Forum Math., 12 (2000), 315–364, arXiv: math.NT/9809210 | DOI | MR | Zbl
[32] Hudson R. W.H.T., Kummer's quartic surface, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1990 | MR
[33] Humbert G., “Sur les fonctions abéliennes singulières (premier Mémoire)”, J. Math. Pures Appl., 5 (1899), 233–350 | Zbl
[34] Humbert G., “Sur les fonctions abéliennes singulières (deuxième Mémoire)”, J. Math. Pures Appl., 6 (1900), 279–386 | Zbl
[35] Humbert G., “Sur les fonctions abéliennes singulières (Troisième Mémoire)”, J. Math. Pures Appl., 7 (1901), 97–124
[36] Hurwitz A., Vorlesungen über allgemeine Funktionentheorie und elliptische Funktionen, Die Grundlehren der mathematischen Wissenschaften, Springer-Verlag, Berlin – New York, 1964 | DOI | MR | Zbl
[37] Jacobi C. G.J., “Review of Legendre, Théorie des fonctions elliptiques, troisième supplément”, J. Reine Angew. Math., 1832 (1832), 413–417 | DOI
[38] Krazer A., Lehrbuch der Thetafunktionen, B.G. Teubner, Leipzig, 1903 | MR | Zbl
[39] Kuhn R. M., “Curves of genus $2$ with split Jacobian”, Trans. Amer. Math. Soc., 307 (1988), 41–49 | DOI | MR | Zbl
[40] Milne J. S., Abelian Varieties, Version 2.0, 2008 https://www.jmilne.org/math/CourseNotes/av.html
[41] Mumford D., Tata lectures on theta, v. II, Modern Birkhäuser Classics, Birkhäuser Boston, Inc., 2007 | DOI | MR
[42] Nakayashiki A., “On algebraic expressions of sigma functions for $(n,s)$ curves”, Asian J. Math., 14 (2010), 175–211, arXiv: 0803.2083 | DOI | MR
[43] Platonov V. P., “Number-theoretic properties of hyperelliptic fields and the torsion problem in Jacobians of hyperelliptic curves over the rational number field”, Russian Math. Surveys, 69 (2014), 1–34 | DOI | MR | Zbl
[44] Previato E., “Victor Enolski (1945–2019)”, Notices Amer. Math. Soc., 67 (2020), 1755–1767 | DOI | MR | Zbl
[45] Scognamillo R., Zannier U., “Introductory notes on valuation rings and function fields in one variable”, Appunti. Scuola Normale Superiore di Pisa (Nuova Serie), 14, Edizioni della Normale, Pisa, 2014 | DOI | MR | Zbl
[46] Serre J. P., Rational points on curves over finite fields, Documents Mathématiques (Paris), 18, Société Mathématique de France, Paris, 2020 | MR | Zbl
[47] Shaska T., “Curves of genus 2 with $(N,N)$ decomposable Jacobians”, J. Symbolic Comput., 31 (2001), 603–617, arXiv: math.AG/0312285 | DOI | MR | Zbl
[48] Shaska T., Völklein H., “Elliptic subfields and automorphisms of genus 2 function fields”, Algebra, Arithmetic and Geometry with Applications (West Lafayette, IN, 2000), Springer, Berlin, 2004, 703–723, arXiv: math.AG/0107142 | DOI | MR
[49] Silverman J. H., The arithmetic of elliptic curves, Graduate Texts in Mathematics, 106, 2nd ed., Springer, Dordrecht, 2009 | DOI | MR | Zbl
[50] Smirnov A. O., “Periodic two-phase “rogue waves””, Math. Notes, 94 (2013), 897–907 | DOI | MR | Zbl
[51] Stichtenoth H., Algebraic function fields and codes, Graduate Texts in Mathematics, 254, 2nd ed., Springer-Verlag, Berlin, 2009 | DOI | MR | Zbl
[52] Weierstrass K., Mathematische Werke I, Mayer und Müller, Berlin, 1894 | MR | Zbl
[53] Wetherell J. L., Bounding the number of rational points on certain curves of high rank, Ph.D. Thesis, University of California, Berkeley, 1997 | MR
[54] Whittaker E. T., Watson G. N., A course of modern analysis, Cambridge Mathematical Library, 4th ed., Cambridge University Press, Cambridge, 1996 | DOI | MR | Zbl